Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus. 2002

Jay A Edelman, and Michael E Goldberg
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892, USA. jedelman@wjh.harvard.edu

The brain maintains the accuracy of visually guided movements by using visual feedback to correct for changes in the nervous system and musculature that would otherwise result in dysmetria. In monkeys, evidence suggests that an adaptive mechanism can compensate for weakness in an extraocular muscle by changing the gain of the neural signal to the weakened muscle. The visual effects of such neuromuscular changes have been simulated using a short-term saccade adaptation paradigm, in which the target spot jumps to a new location during the initial saccade. Under these circumstances, over several hundred trials, monkeys gradually change the amplitude of their saccades so that the eye lands closer to the final location of the target spot. There is considerable evidence from lesion and single-unit recording studies that the locus of such saccade adaptation is downstream of the superior colliculus in the cerebellum. Paradoxically, previous research has indicated that saccades evoked by electrical stimulation in the superior colliculus are not modified by short-term saccade adaptation, suggesting that adaptation occurs in the oculomotor system upstream of the superior colliculus or else in a pathway that bypasses the superior colliculus. We tested whether this result was due to using suprathreshold stimulation currents. Stimulating at 44 low-threshold sites in the superior colliculi of three monkeys revealed that using low current levels evoked saccades that were modified by adaptation. Adaptation for visually guided and electrically evoked saccades had similar time courses and tended to be accomplished by a reduction in saccade velocity rather than a decrease in duration. Moreover, the more similar the velocity of electrically evoked and visually guided saccades prior to the start of saccadic adaptation the greater the effect of adaptation on electrically evoked saccades. These results suggest that the superior colliculus is indeed upstream of the locus of adaptation, corroborating previous lesion and single-cell recording studies, but that the mechanism mediating saccade adaptation is sensitive to the parameters of electrical stimulation.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D011698 Pursuit, Smooth Eye movements that are slow, continuous, and conjugate and occur when a fixed object is moved slowly. Pursuits, Smooth,Smooth Pursuit,Smooth Pursuits
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012438 Saccades An abrupt voluntary shift in ocular fixation from one point to another, as occurs in reading. Pursuit, Saccadic,Saccadic Eye Movements,Eye Movement, Saccadic,Eye Movements, Saccadic,Movement, Saccadic Eye,Movements, Saccadic Eye,Pursuits, Saccadic,Saccade,Saccadic Eye Movement,Saccadic Pursuit,Saccadic Pursuits
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

Jay A Edelman, and Michael E Goldberg
January 1997, Brain research bulletin,
Jay A Edelman, and Michael E Goldberg
September 1996, Journal of neurophysiology,
Jay A Edelman, and Michael E Goldberg
October 1996, Neuroreport,
Jay A Edelman, and Michael E Goldberg
January 1988, Experimental brain research,
Jay A Edelman, and Michael E Goldberg
February 1977, Brain research,
Jay A Edelman, and Michael E Goldberg
January 1996, Experimental brain research,
Jay A Edelman, and Michael E Goldberg
July 1996, Journal of neurophysiology,
Jay A Edelman, and Michael E Goldberg
July 1975, Experimental brain research,
Copied contents to your clipboard!