Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. 2002

Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
Program in Molecular Immunology, Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Augusta, GA 30912, USA. amellor@mail.mcg.edu

Pharmacological inhibition of indoleamine 2,3-dioxygenase (IDO) activity during murine gestation results in fetal allograft rejection and blocks the ability of murine CD8(+) dendritic cells to suppress delayed-type hypersensitivity responses to tumor-associated peptide Ags. These observations suggest that cells expressing IDO inhibit T cell responses in vivo. To directly evaluate the hypothesis that cells expressing IDO inhibit T cell responses, we prepared IDO-transfected cell lines and transgenic mice overexpressing IDO and assessed allogeneic T cell responses in vitro and in vivo. T cells cocultured with IDO-transfected cells did not proliferate but expressed activation markers. The potency of allogeneic T cell responses was reduced significantly when mice were preimmunized with IDO-transfected cells. In addition, adoptive transfer of alloreactive donor T cells yielded reduced numbers of donor T cells when injected into IDO-transgenic recipient mice. These outcomes suggest that genetically enhanced IDO activity inhibited T cell proliferation in vitro and in vivo. Genetic manipulation of IDO activity may be of therapeutic utility in suppressing undesirable T cell responses.

UI MeSH Term Description Entries
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
January 2009, Handbook of experimental pharmacology,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
May 2005, The journal of gene medicine,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
January 2012, PloS one,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
February 2010, World journal of gastroenterology,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
June 2004, Blood,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
October 2012, Annals of hematology,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
August 2012, Cancer immunology, immunotherapy : CII,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
April 2008, Immunology letters,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
December 2005, Biochemical and biophysical research communications,
Andrew L Mellor, and Derin B Keskin, and Theodore Johnson, and Phillip Chandler, and David H Munn
January 2001, Transplantation proceedings,
Copied contents to your clipboard!