Photoreactivation of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene of Saccharomyces cerevisiae. 2002

Nerys R Morse, and Valerie Meniel, and Raymond Waters
School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK.

Photoreactive repair (PR) of cyclobutane pyrimidine dimers (CPDs) was mapped at nucleotide resolution in nucleotide excision repair (NER) proficient and deficient strains for the transcriptionally active and inactive MFA2 gene. Enhanced PR in the control region occurred in areas where no nucleosomes were present, particularly linker regions in the alpha mating type. The presence of excision plus transcriptional activation alleviated this preference, causing repair in the regions that were linker and core in the alpha mating type to be the same in this strain. Transcription had no effect on photoreactive repair in transcribed and downstream regions of MFA2, where similar rates were observed for specific CPDs in both strands. The presence of positioned nucleosomes in alpha mating types revealed slow repair in the nucleosome core, with faster repair occurring at the 3' and 5' edges. These data support the evidence that CPDs are repaired quicker in nucleosome-free regions and at edges of nucleosomes. CPDs in the linker regions are repaired more efficiently in the transcriptionally inactive strains, suggesting that nucleosome movement associated with transcription of MFA2 hampers PR irrespective of the strand. Proficient NER influenced PR in the TATA and Mcm1 binding sites by enhancing it, particularly when transcription was activated.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

Nerys R Morse, and Valerie Meniel, and Raymond Waters
February 1991, Plant physiology,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
October 1986, Molecular and cellular biology,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
April 1985, Proceedings of the National Academy of Sciences of the United States of America,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
November 2003, The Journal of biological chemistry,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
November 1994, Mutation research,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
July 2010, Analytical and bioanalytical chemistry,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
January 1978, Molekuliarnaia biologiia,
Nerys R Morse, and Valerie Meniel, and Raymond Waters
November 2023, Chemical communications (Cambridge, England),
Copied contents to your clipboard!