Ligand specificity and conformational dependence of the hepatic nuclear factor-4alpha (HNF-4alpha ). 2002

Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
Department of Physiology and Pharmacology, Texas A&M University, Texas Veterinary Medical Center, College Station, Texas 77843-4466, USA.

Hepatic nuclear factor-4alpha (HNF-4alpha) controls the expression of genes encoding proteins involved in lipid and carbohydrate metabolism. Fatty acyl-CoA thioesters have recently been proposed to be naturally occurring ligands of HNF-4alpha and to regulate its transcriptional activity as function of their chain length and degree of unsaturation (Hertz, R., Magenheim, J., Berman, I., and Bar-Tana, J. (1998) Nature 392, 512-516). However, the apparent low affinities (microm K(d) values) obtained with a radiolabeled fatty acyl-CoA ligand binding assay raised questions regarding the physiological significance of this finding. Furthermore, it is not known whether interaction with fatty acyl-CoA alters the structure of HNF-4alpha. These issues were examined using rat recombinant HNF-4alpha ligand-binding domain (HNF-4alphaLBD) in conjunction with photon counting fluorescence and circular dichroism. First, fluorescence resonance energy transfer between HNF-4alphaLBD tryptophan (Trp) and cis-parinaroyl-CoA yielded an intermolecular distance of <or=42 A, thus pointing to direct molecular interaction rather than nonspecific coaggregation. Second, quenching of HNF-4alphaLBD intrinsic Trp fluorescence by fatty acyl-CoAs (e.g. pamitoyl-, stearoyl-, linoleoyl-, and arachidonoyl-CoAs) yielded a single binding site with K(d) values of 1.6-4.0 nm. These affinities were 2-3 orders of magnitude higher than those previously derived by radiolabeled fatty acyl-CoA ligand binding assay. Third, binding of fatty acyl-CoAs was specific as the binding affinities of the respective free fatty acids or free CoA (K(d) values of 421-742 nm) were significantly lower. Fourth, circular dichroism demonstrated that the HNF-4alphaLBD secondary structure was significantly and differentially altered by fatty acyl-CoA binding. The opposite effects of saturated versus polyunsaturated fatty acyl-CoAs on HNF-4alpha LBD secondary structure correlated with their opposite regulatory effects on HNF-4alpha function. Fifth, the CoA thioesters of some hypolipidemic peroxisome proliferators bind with high affinity (K(d) values as low as 2.6 nm) to HNF-4alpha LBD, thus indicating that HNF-4alpha may serve as target for these drugs. In summary, these data demonstrate for the first time high affinity binding to HNF-4alpha of fatty and xenobiotic acyl-CoAs in the physiological range, resulting in significantly altered HNF-4alpha conformation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010750 Phosphoproteins Phosphoprotein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
July 2010, Diabetologia,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
February 2000, Genes & development,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
May 2002, The Journal of biological chemistry,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
May 2004, The Journal of biological chemistry,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
February 2004, Molecular genetics and metabolism,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
February 2010, Gut,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
April 1998, Nature,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
May 2005, The Biochemical journal,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
March 2005, Diabetologia,
Anca D Petrescu, and Rachel Hertz, and Jacob Bar-Tana, and Friedhelm Schroeder, and Ann B Kier
March 2002, Biochemical and biophysical research communications,
Copied contents to your clipboard!