Fatty acid profiles and lipid peroxidation of microsomes and mitochondria from liver, heart and brain of Cairina moschata. 2002

Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
Cátedra de Fisiología Animal, Facultad de Cs. Naturales y Museo, La Plata, Argentina.

Studies were done to analyze the fatty acid composition and sensitivity to lipid peroxidation (LP) of mitochondria and microsomes from duck liver, heart and brain. The fatty acid composition of mitochondria and microsomes was tissue-dependent. In particular, arachidonic acid comprised 17.39+/-2.32, 11.75+/-3.25 and 9.70+/-0.40% of the total fatty acids in heart, liver and brain mitochondria respectively but only 13.39+/-1.31, 8.22+/-2.43 and 6.44+/-0.22% of the total fatty acids in heart, liver and brain microsomes, respectively. Docosahexahenoic acid comprised 17.02+/-0.78, 4.47+/-1.02 and 0.89+/-0.07% of the total fatty acids in brain, liver and heart mitochondria respectively but only 7.76+/-0.53, 3.27+/-0.73 and 1.97+/-0.38% of the total fatty acids in brain, liver and heart microsomes. Incubation of organelles with ascorbate-Fe(2+) at 37 degrees C caused a stimulation of LP as indicated by the increase in light emission: chemiluminescence (CL) and the decrease of arachidonic acid to: 5.17+/-1.34, 8.86+/-0.71 and 5.86+/-0.68% of the total fatty acids in heart, liver and brain mitochondria, respectively, and to 4.10+/-0.61 in liver microsomes. After LP docosahexahenoic acid decrease to 7.29+/-1.47, 1.36+/-0.18 and 0.30+/-0.11% of the total fatty acids in brain, liver and heart mitochondria. Statistically significant differences in the percent of both peroxidable fatty acids (arachidonic and docosahexaenoic acid) were not observed in heart and brain microsomes and this was coincident with absence of stimulation of LP. The results indicate a close relationship between tissue sensitivity to LP in vitro and long chain polyunsaturated fatty acid concentration. Nevertheless, any oxidative stress in vitro caused by ascorbate-Fe(2+) at 37 degrees C seems to avoid degradation of arachidonic and docosahexaenoic acids in duck liver and brain microsomes. It is possible that because of the important physiological functions of arachidonic and docosahexaenoic acids in these tissues, they are protected to maintain membrane content during oxidative stress.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
February 1998, Archives of physiology and biochemistry,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
October 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
August 1981, Journal of lipid research,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
January 1985, Voprosy meditsinskoi khimii,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
August 1988, Biochemical pharmacology,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
January 1980, Eisei Shikenjo hokoku. Bulletin of National Institute of Hygienic Sciences,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
June 1998, Research communications in molecular pathology and pharmacology,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
August 1979, Biochemical and biophysical research communications,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
October 1971, Lipids,
Ana M Gutiérrez, and Guillermo R Reboredo, and Angel Catalá
December 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!