Genesis of fatty liver and hyperlipemia in the fetal guinea pig. 1975

T Bohmer, and R J Havel

10 to 20% of [1-14C] palmitate injected into pregnant guinea pigs was recovered in lipids of their fetuses. From these data and the rate of transport of palmitate in maternal blood, it appears that placental transport of free fatty acids can account for the accumulation of lipids in late gestational fetuses. About 80% of the labeled palmitate in the fetus appeared initially in lipids of the liver. 14C appeared in plasma triglyceride fatty acids after a few minutes and subsequently accumulated in lipids of white and brown adipose tissue, suggesting that much of the palmitate deposited in adipose tissue were derived from hepatogenous triglyceride fatty acids. By contrast, 14C was usually maximal in heart and carcass lipids before it appeared in plasma triglyceride fatty acids. Lipoprotein lipase activity in fetal adipose tissue was low, and activity of cofactor protein of lipoprotein lipase in fetal blood plasma was much lower than that observed in other mammalian species. On the basis of these and earlier observations, it is concluded that the accumulation of triglycerides in liver and blood plasma of fetal guinea pigs during late gestation is at least partly the result of the large uptake of maternally derived free fatty acids by the fetal liver accompanied by rapid synthesis and secretion of triglyceride-rich very low density lipoproteins into the blood. However, limited uptake of triglyceride fatty acids in adipose tissue may contribute to the fatty liver and hyperlipemia.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids

Related Publications

T Bohmer, and R J Havel
July 1951, Bulletin of the Johns Hopkins Hospital,
T Bohmer, and R J Havel
June 1954, The Journal of biological chemistry,
T Bohmer, and R J Havel
August 1964, Abbottempo,
T Bohmer, and R J Havel
June 1954, The Journal of biological chemistry,
T Bohmer, and R J Havel
January 1981, Biochimica et biophysica acta,
T Bohmer, and R J Havel
December 1982, The Biochemical journal,
T Bohmer, and R J Havel
January 1983, Metabolism: clinical and experimental,
T Bohmer, and R J Havel
October 1974, Biochimica et biophysica acta,
Copied contents to your clipboard!