Synthesis of lysophosphatidylethanolamine analogs that inhibit renin activity. 1975

J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby

A series of lysophosphatidylethanolamine analogs containing saturated and methylene-interrupted cis-olefinic fatty chains was synthesized by phosphorylation and phosphonylation of respective fatty alcohols. Arachidonyl- and linolenylphosphorylethanolamines (12, 13), arachidonyl (2-phthalimidoethyl)phosphonate (17), and arachidonyl (2-aminoethyl)phosphonate (18) were found to be effective inhibitors of the renin-renin substrate reaction in vitro; lysophosphatidylethanolamine analogs 14-16 of lesser unsaturation were either weakly active or inactive. In a preliminary study, intramuscular administration of 25 mg/kg/day of arachidonyl (2-aminoethyl)phosphonate (18) to the hypertensive rat caused pronounced reduction (50 mm) in blood pressure within 3 days; upon continued dosage (15 mg/kg/day) of 18 for an additional 4 days, plasma renin activity was found to be 16 ng/0.1 ml/15 hr as compared with 69 ng/0.1 ml/15 hr before initial drug administration. Arachidonic acid (3), arachidonyl alcohol (8), and several corresponding tetraenoid ester, amide, mesylate, and glyceryl ether derivatives (4-7, 10, 11), that are not phosphate or phosphonate esters, were found to exhibit negligible or modest inhibition of renin activity in vitro.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008246 Lysophospholipids Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal. Lysophosphatidic Acids,Lysophospholipid,Acids, Lysophosphatidic
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000808 Angiotensinogen An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver in response to lowered blood pressure and secreted into blood circulation. Angiotensinogen is the inactive precursor of the ANGIOTENSINS produced in the body by successive enzyme cleavages. Cleavage of angiotensinogen by RENIN yields the decapeptide ANGIOTENSIN I. Further cleavage of angiotensin I (by ANGIOTENSIN CONVERTING ENZYME) yields the potent vasoconstrictor octapeptide ANGIOTENSIN II; and then, via other enzymes, other angiotensins also involved in the hemodynamic-regulating RENIN-ANGIOTENSIN SYSTEM. Hypertensinogen,Renin-Substrate,SERPINA8,Proangiotensin,Renin Substrate Tetradecapeptide,Serpin A8,Renin Substrate,Tetradecapeptide, Renin Substrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
March 1992, Biochemical pharmacology,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
January 1997, Nucleic acids symposium series,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
September 1991, Canadian journal of physiology and pharmacology,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
January 1990, Glycoconjugate journal,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
June 1971, Journal of medicinal chemistry,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
October 2001, Biochemical pharmacology,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
March 1992, The American journal of physiology,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
April 1980, Chemistry and physics of lipids,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
July 2023, Organic & biomolecular chemistry,
J G Turcotte, and C S Yu, and H L Lee, and S K Pavanaram, and S Sen, and R R Smeby
August 2012, European journal of medicinal chemistry,
Copied contents to your clipboard!