Developmental changes in ionotropic glutamate receptors: lessons from hippocampal synapses. 2002

Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, UK. elek.molnar@bristol.ac.uk

Glutamatergic synapses are the primary source of excitatory transmission in the central nervous system (CNS), and their formation is critical in the establishment of neuronal connections. The refinement of these connections occurs during development and also it is postulated during learning and memory. Recent progress in understanding the molecular components of synaptic junctions, together with advances in imaging techniques, has started to offer new insights into the development of excitatory synapses. Studies performed on low-density primary neuronal cultures have enabled dissection of the temporal sequence of events, which have lead to the differentiation of pre- and postsynaptic components. A central feature of the development of excitatory synapses is the accumulation of glutamatergic receptors (GluRs) at the postsynaptic site. These receptors need to be localized and fixed opposite nerve terminals that release glutamate. But for this to occur, neurons require intracellular anchoring molecules, as well as mechanisms that ensure the efficient turnover and transport of receptor proteins. This review focuses on some of the developmental changes observed in the subcellular distribution and molecular organization of AMPA and NMDA type ionotropic GluRs (iGluRs), which mediate the majority of fast excitatory neurotransmission in the CNS.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
January 2002, TheScientificWorldJournal,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
October 2000, Cellular and molecular life sciences : CMLS,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
January 1990, Advances in experimental medicine and biology,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
January 2006, Current neuropharmacology,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
August 1999, Current opinion in chemical biology,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
February 2019, International journal of molecular sciences,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
June 2009, Synapse (New York, N.Y.),
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
March 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
June 1993, Current opinion in neurobiology,
Elek Molnar, and Lisa Pickard, and Joshua K Duckworth
January 2001, Progress in brain research,
Copied contents to your clipboard!