Requirement for IGF-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. 2002

Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
Department of Neuroscience & Anatomy H109, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033.

Induction of cyclin proteins is required for progression of cells through the G(1)-S and G(2)-M cell cycle checkpoints and is a primary mechanism by which mitogens regulate cell cycle progression. IGF-I and the epidermal growth factor (EGF)-related ligands are mitogens for mammary epithelial cells in vitro and are essential for growth of the mammary epithelium during development. We report here that IGF-I in combination with EGF or TGFalpha is synergistic in promoting DNA synthesis in mammary epithelial cells in the intact mammary gland cultured in vitro. We further investigated the role of IGF-I and EGF in cyclin expression and cell cycle progression in the mammary gland and demonstrate that IGF-I and EGF induce expression of early G(1) cyclins. However, we show that IGF-I, but not EGF, induces late G(1) and G(2) cyclins and is required for mammary epithelial cells to overcome the G(1)-S checkpoint. These data demonstrate that IGF-I is essential for cell cycle progression in mammary epithelial cells and that it is required for EGF-mediated progression past the G(1)-S checkpoint in these cells.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone

Related Publications

Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
January 2004, Journal of mammary gland biology and neoplasia,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
July 1998, Clinical cancer research : an official journal of the American Association for Cancer Research,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
March 1996, Molecular and cellular biology,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
December 2010, Molecular vision,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
September 1998, International journal of cancer,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
May 1980, Nature,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
October 2004, Molecular and cellular biology,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
September 2005, International journal of molecular medicine,
Malinda A Stull, and Monica M Richert, and Aimee V Loladze, and Teresa L Wood
January 2000, Nutrition and cancer,
Copied contents to your clipboard!