The expression profile of myogenic transcription factors in satellite cells from denervated rat muscle. 2002

Annette Maier, and Zhe Zhou, and Antje Bornemann
Institute of Brain Research, University of Tübingen, Germany.

The muscle-specific transcription factors of the MyoD family are altered after denervation. In order to determine whether this shift takes place in satellite cells (SC), we investigated the expression pattern of MyoD, myf5, myogenin, and MRF4 in SC. Hindlimb muscles of rats were denervated for 2 days to 4 weeks. SC were isolated, pooled and the transcription of all 4 factors was assessed by RT-PCR. Protein expression was assessed in histological sections of soleus and anterior tibial (TA) muscles; SC were identified by M-cadherin. Pooled SC from innervated muscles expressed myf5 mRNA, and very weakly MyoD and myogenin mRNA. MyoD and myogenin protein was found in only few SC. After denervation, pooled SC expressed myf5 mRNA, and very weakly myogenin and MRF4 mRNA. Myogenin protein was found in less than about 10% of the cells, whereas MRF4 protein was absent from SC. We conclude that the presence of myf5 and the absence of MyoD and MRF4 protein in SC after denervation indicated the quiescent state of the cell cycle. A subset of SC has additionally acquired myogenin. SC after denervation might be less easily recruited into the mitotic cycle than SC from normal muscle, rendering regeneration of denervated muscle less efficient than normal muscle.

UI MeSH Term Description Entries
D008297 Male Males
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017570 MyoD Protein A myogenic regulatory factor that controls myogenesis. Though it is not clear how its function differs from the other myogenic regulatory factors, MyoD appears to be related to fusion and terminal differentiation of the muscle cell. MyoD Factor,Factor, MyoD,Protein, MyoD
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Annette Maier, and Zhe Zhou, and Antje Bornemann
March 2004, American journal of physiology. Cell physiology,
Annette Maier, and Zhe Zhou, and Antje Bornemann
January 2002, Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia,
Annette Maier, and Zhe Zhou, and Antje Bornemann
November 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Annette Maier, and Zhe Zhou, and Antje Bornemann
April 2004, Experimental and molecular pathology,
Annette Maier, and Zhe Zhou, and Antje Bornemann
March 2012, Collegium antropologicum,
Annette Maier, and Zhe Zhou, and Antje Bornemann
May 1993, Nucleic acids research,
Annette Maier, and Zhe Zhou, and Antje Bornemann
January 1988, Monographs in developmental biology,
Annette Maier, and Zhe Zhou, and Antje Bornemann
August 2009, Experimental gerontology,
Annette Maier, and Zhe Zhou, and Antje Bornemann
September 2014, Poultry science,
Copied contents to your clipboard!