Direct visualization of ligand-protein interactions using atomic force microscopy. 2002

Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.

1. Streptavidin is a 60-kDa tetramer which binds four molecules of biotin with extremely high affinity (K(A) approximately 10(14) M(-1)). We have used atomic force microscopy (AFM) to visualize this ligand-protein interaction directly. 2. Biotin was tagged with a short (152-basepair; 50-nm) DNA rod and incubated with streptavidin. The resulting complexes were then imaged by AFM. The molecular volume of streptavidin calculated from the dimensions of the protein particles (105+/-3 nm(3)) was in close agreement with the value calculated from its molecular mass (114 nm(3)). Biotinylation increased the apparent size of streptavidin (to 133+/-2 nm(3)), concomitant with an increase in the thermal stability of the tetramer. 3. Images of streptavidin with one to four molecules of DNA-biotin bound were obtained. When two ligands were bound, the angle between the DNA rods was either acute or obtuse, as expected from the relative orientations of the biotin binding sites. The ratio of acute : obtuse angles (1 : 3) was lower than the expected value (1 : 2), indicating a degree of steric hindrance in the binding of the DNA-biotin. The slight under-representation of higher occupancy states supported this idea. 4. Streptavidin with a single molecule of DNA-biotin bound was used to tag biotinylated beta-galactosidase, a model multimeric enzyme. 5. The ability to image directly the binding of a ligand to its protein target by AFM provides useful information about the nature of the interaction, and about the effect of complex formation on the structure of the protein. Furthermore, the use of DNA-biotin/streptavidin tags could potentially shed light on the architecture of multi-subunit proteins.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies
D019809 Streptavidin A 60-kDa extracellular protein of Streptomyces avidinii with four high-affinity biotin binding sites. Unlike AVIDIN, streptavidin has a near neutral isoelectric point and is free of carbohydrate side chains. Strepavidin

Related Publications

Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
October 2009, Nucleic acids research,
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
January 2022, Methods in molecular biology (Clifton, N.J.),
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
January 2018, Seminars in cell & developmental biology,
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
June 2013, Journal of molecular recognition : JMR,
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
January 2005, Methods in molecular biology (Clifton, N.J.),
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
July 2011, Journal of visualized experiments : JoVE,
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
June 1998, Biophysical journal,
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
January 2018, Methods in molecular biology (Clifton, N.J.),
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
November 2007, Journal of molecular biology,
Calum S Neish, and Ian L Martin, and Robert M Henderson, and J Michael Edwardson
January 2004, Biopolymers,
Copied contents to your clipboard!