HIV-1 Nef induces dendritic cell differentiation: a possible mechanism of uninfected CD4(+) T cell activation. 2002

Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
Laboratory of Immunology, Istituto Superiore di Sanità, Rome, 00161, Italy.

Human immunodeficiency virus (HIV)-1 Nef protein is an essential modulator of AIDS pathogenesis and we have previously demonstrated that rNef enters uninfected human monocytes and induces T cells bystander activation, up-regulating IL-15 production. Since dendritic cells (DCs) play a central role in HIV-1 primary infection we investigated whether rNef affects DCs phenotypic and functional maturation in order to define its role in the immunopathogenesis of AIDS. We found that rNef up-regulates the expression on immature DCs of surface molecules known to be critical for their APC function. These molecules include CD1a, HLA-DR, CD40, CD83, CXCR4, and to a lower extent CD80 and CD86. On the other hand, rNef down-regulates surface expression of HLA-ABC and mannose receptor. The functional consequence of rNef treatment of immature DCs is a decrease in their endocytic and phagocytic activities and an increase in cytokine (IL-1beta, IL-12, IL-15, TNF-alpha) and chemokine (MIP-1alpha, MIP-1beta, IL-8) production as well as in their stimulatory capacity. These results indicate that rNef induces a coordinate series of phenotypic and functional changes promoting DC differentiation and making them more competent APCs. Indeed, Nef induces CD4(+) T cell bystander activation by a novel mechanism involving DCs, thus promoting virus dissemination.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006684 HLA-DR Antigens A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS. HLA-DR,Antigens, HLA-DR,HLA DR Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
January 2012, PloS one,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
February 1994, Vaccine,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
August 2015, Journal of virology,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
April 2013, Future virology,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
May 1994, AIDS research and human retroviruses,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
September 2021, Autophagy,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
April 2013, Archives of virology,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
July 1999, Proceedings of the National Academy of Sciences of the United States of America,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
January 1999, The New England journal of medicine,
Maria Giovanna Quaranta, and Elena Tritarelli, and Luciana Giordani, and Marina Viora
August 2013, Journal of microbiology and biotechnology,
Copied contents to your clipboard!