Ets-1 positively regulates Fas ligand transcription via cooperative interactions with Sp1. 2002

Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
Centre for Thrombosis and Vascular Research and Surgical Professional Unit, St. Vincents Hospital, The University of New South Wales, Sydney 2052, Australia.

The FasL/Fas system has been implicated in smooth muscle cell apoptosis and atherosclerotic plaque instability, a process that can lead to plaque rupture, precipitating myocardial infarction and sudden death. The transcriptional mechanisms regulating FasL gene expression in vascular smooth muscle cells are poorly understood. We recently described a novel mechanism mediating inducible FasL gene expression in smooth muscle cells involving the zinc finger transcription factor Sp1 (Kavurma, M. M., Santiago, F. S., Bofocco, E., and Khachigian, L. M. (2001) J. Biol. Chem. 276, 4964-4971). We now show that FasL gene expression is governed by cooperative activation between Sp1 and the Ets family of transcription factors. The overexpression of Ets-1 was sufficient to induce FasL promoter-dependent expression and protein synthesis. Ets-1 activation of the promoter was abrogated either by deletion or mutation of the Sp1 binding site. The overexpression of Ets-1 together with Sp1 produced cooperative activation of the FasL promoter. Sp1 induction of the FasL promoter was abrogated by an Ets-1 mutant lacking the activation domain. Conversely, Ets-1 activation of the promoter was blocked by an Sp1 mutant bearing the DNA-binding domain. The mutation of the (-365)GGAA(-362) element in the FasL promoter abolished Ets-1 activation and attenuated Sp1-inducible gene expression. Immunoprecipitation and supershift experiments revealed that endogenous Ets-1 and Sp1 physically interact and co-occupy this site. Thus, FasL gene expression in vascular smooth muscle cells is mediated by cooperativity between Ets-1 and Sp1.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin

Related Publications

Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
July 2010, The Journal of biological chemistry,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
June 1990, Proceedings of the National Academy of Sciences of the United States of America,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
July 2006, American journal of physiology. Gastrointestinal and liver physiology,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
August 2006, Journal of immunology (Baltimore, Md. : 1950),
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
February 2001, The Journal of biological chemistry,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
March 1999, The Journal of biological chemistry,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
November 1996, Oncogene,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
January 2010, Endocrine journal,
Mary M Kavurma, and Yuri Bobryshev, and Levon M Khachigian
April 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!