Insulin potentiates bradykinin-induced inositol 1,4,5-triphosphate in neonatal rat cardiomyocytes. 2002

Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki National Hospital, Aomori, Japan.

This study investigated whether cross-talk between insulin and the bradykinin receptor exists to modulate bradykinin-induced increase in inositol 1,4,5-triphosphate (IP3) in neonatal rat cardiomyocytes. Treatment of the cultures with 1, 2, and 20 nM of insulin for 90 min before adding bradykinin increased the IP3 response to the same bradykinin dose to 372.0 +/- 17.8, 413.7 +/- 17.7, and 457.3 +/- 18.2 pmol/mg protein, respectively. Tyrphostine A23 and genistein (tyrosine kinase inhibitors) decreased the bradykinin (10 nM)-induced IP3 production potentiated by 2 nM insulin from 400.7 +/- 19.4 pmol/mg protein to 297.3 +/- 42.4 and 314.3 +/- 37.5 pmol/mg protein, respectively. Administration of 100 nM N-(6-aminohexyl)-5-chloro-naphthalenesulfonamide (W7, a calmodulin antagonist) significantly increased the bradykinin (10 nM)-induced IP3 production from 311.7 +/- 13.0 pmol/mg protein in the absence of insulin to 457.8 +/- 19.9, 578.2 +/- 25.9, and 665.2 +/- 16.0 pmol/mg protein in the presence of 1, 2, and 20 nM insulin, respectively. These results demonstrate that cross-talk between the insulin receptor and the bradykinin signaling system may exist in neonatal rat cardiomyocytes. Tyrosine kinase appears to play an important role in the cross-talking. Calmodulin controls the IP3 response to bradykinin by a negative feedback mechanism.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
July 1994, European journal of pharmacology,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
September 1996, Hypertension (Dallas, Tex. : 1979),
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
August 1999, Biochimica et biophysica acta,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
December 1990, Biochemical and biophysical research communications,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
May 2012, Journal of molecular and cellular cardiology,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
February 2008, Cell calcium,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
September 1991, European journal of pharmacology,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
December 1997, The Journal of comparative neurology,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
August 1994, Fukuoka igaku zasshi = Hukuoka acta medica,
Akira Kudoh, and Emiko Kudoh, and Hiroshi Katagai, and Tomoko Takazawa
February 2012, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
Copied contents to your clipboard!