Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. 2002

Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea.

Noradrenaline (NA) is a major neurotransmitter that regulates many neuroendocrine and sympathetic autonomic functions of the hypothalamic paraventricular nucleus (PVN). Previously NA has been shown to increase the frequency of excitatory synaptic activity of parvocellular neurons within the PVN, but little is known about its effects on inhibitory synaptic activity. In this work, we studied the effects of NA (1-100 microM) on the spontaneous inhibitory synaptic currents (sIPSC) of type II PVN neurons in brain slices of the rat using the whole cell patch-clamp technique. Spontaneous IPSCs were observed from most type II neurons (n = 121) identified by their anatomical location within the PVN and their electrophysiological properties. Bath application of NA (100 microM) increased sIPSC frequency by 256% in 59% of the neurons. This effect was blocked by prazosin (2-20 microM), the alpha(1)-adrenoceptor antagonist and mimicked by phenylephrine (10-100 microM), the alpha(1)-adrenoceptor agonist. However, in 33% of the neurons, NA decreased sIPSC frequency by 54%, and this effect was blocked by yohimbine (2-20 microM), the alpha(2)-adrenoceptor antagonist and mimicked by clonidine (50 microM), the alpha(2)-adrenoceptor agonist. The Na(+) channel blocker, tetrodotoxin (0.1 microM) blocked the alpha(1)-adrenoceptor-mediated effect, but not the alpha(2)-adreonoceptor-mediated one. Both of the stimulatory and inhibitory effects of NA on sIPSC frequency were observed in individual neurons when tested with NA alone, or both phenylephrine and clonidine. Furthermore, in most neurons that showed the stimulatory effects, the inhibitory effects of NA were unmasked after blocking the stimulatory effects by prazosin or tetrodotoxin. These data indicate that tonic GABAergic inputs to the majority of type II PVN neurons are under a dual noradrenergic modulation, the increase in sIPSC frequency via somatic or dendritic alpha(1)-adrenoceptors and the decrease in sIPSC frequency via axonal terminal alpha(2)-adrenoceptors on the presynaptic GABAergic neurons.

UI MeSH Term Description Entries
D008297 Male Males
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
March 2006, Journal of neuroendocrinology,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
February 2008, Journal of neurophysiology,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
July 2011, The European journal of neuroscience,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
May 2007, American journal of physiology. Regulatory, integrative and comparative physiology,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
January 2000, Neuroscience,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
September 2003, The European journal of neuroscience,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
September 2010, Neuroscience letters,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
March 2020, The Journal of physiology,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
February 2000, Journal of neurophysiology,
Seong Kyu Han, and Wonee Chong, and Long Hua Li, and In Se Lee, and Kazuyuki Murase, and Pan Dong Ryu
July 2005, Journal of neurophysiology,
Copied contents to your clipboard!