SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. 2002

C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
Novartis Pharma AG, Research Transplantation, WSJ-386, CH - 4002 Basel, Switzerland. Christian.Bruns@pharma.novartis.com

OBJECTIVE The aim of the present study was to identify a small, metabolically stable somatotropin release inhibiting factor (SRIF) analog with a more universal binding profile similar to that of natural somatostatin, resulting in improved pharmacological properties and hence new therapeutic uses. METHODS A rational drug design approach was followed by synthesizing alanine-substituted SRIF-14 analogs to determine the importance of single amino acids in SRIF-14 for SRIF receptor subtype binding. The incorporation of structural elements of SRIF-14 in a stable cyclohexapeptide template in the form of modified unnatural amino acids resulted in the identification of the novel cyclohexapeptide SOM230. RESULTS SOM230 binds with high affinity to SRIF receptor subtypes sst1, sst2, sst3 and sst5 and displays a 30- to 40-fold higher affinity for sst1 and sst5 than Sandostatin (octreotide; SMS 201-995) or Somatuline (BIM 23014). In vitro, SOM230 effectively inhibited the growth hormone releasing hormone (GHRH)-induced growth hormone (GH) release in primary cultures of rat pituitary cells with an IC(50) of 0.4+/-0.1 nmol/l (n=5). In vivo, SOM230 also potently suppressed GH secretion in rats. The ED(50) values determined at 1 h and 6 h post injection of SOM230 indicated its very long duration of action in vivo. This property was also reflected in pharmacokinetic studies comparing plasma levels of SMS 201-995 and SOM230 after subcutaneous application. Whereas SMS 201-995 had a terminal elimination half life of 2 h, this was markedly prolonged in SOM230-treated animals (t(1/2)=23 h). Furthermore, in rats SOM230 demonstrated a much higher efficacy in lowering plasma insulin-like growth factor-I (IGF-I) levels compared with SMS 201-995. The infusion of 10 microg/kg/h of SOM230 using subcutaneously implanted minipumps decreased plasma IGF-I levels far more effectively than SMS 201-995. After 126 days of continuous infusion of SOM230 plasma IGF-I levels were decreased by 75% of placebo-treated control animals. For comparison SMS 201-995, when used under the same experimental conditions, resulted in only a 28% reduction of plasma IGF-I levels, indicating a much higher efficacy for SOM230 in this animal model. It is important to note that the inhibitory effect of SOM230 was relatively selective for GH and IGF-I in that insulin and glucagon secretion was inhibited only at higher doses of SOM230. This lack of potent inhibition of insulin and glucagon release was also reflected in the lack of effect on plasma glucose levels. Even after high dose treatment over 126 days no obvious adverse side effects were noticed, including changes in plasma glucose levels. CONCLUSIONS We have identified a novel short synthetic SRIF peptidomimetic, which exhibits high affinity binding to four of the five human SRIF receptor subtypes and has potent, long lasting inhibitory effects on GH and IGF-I release. Therefore SOM230 is a promising development candidate for effective GH and IGF-I inhibition and is currently under evaluation in phase 1 clinical trials.

UI MeSH Term Description Entries
D007329 Insulin Antagonists Compounds which inhibit or antagonize the biosynthesis or action of insulin. Antagonists, Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008297 Male Males
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
November 1974, Canadian journal of biochemistry,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
February 1974, Nihon Naibunpi Gakkai zasshi,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
June 1974, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
August 2001, European journal of pharmacology,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
April 2015, Neuropharmacology,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
January 1977, Annales d'endocrinologie,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
May 1998, Annals of the New York Academy of Sciences,
C Bruns, and I Lewis, and U Briner, and G Meno-Tetang, and G Weckbecker
March 2002, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!