Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis. 2002

David E Graham, and Huimin Xu, and Robert H White
Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308, USA.

The genome sequence of the hyperthermophilic methanogen Methanococcus jannaschii contains homologs of most genes required for spermidine polyamine biosynthesis. Yet genomes from neither this organism nor any other euryarchaeon have orthologs of the pyridoxal 5'-phosphate-dependent ornithine or arginine decarboxylase genes, required to produce putrescine. Instead, as shown here, these organisms have a new class of arginine decarboxylase (PvlArgDC) formed by the self-cleavage of a proenzyme into a 5-kDa subunit and a 12-kDa subunit that contains a reactive pyruvoyl group. Although this extremely thermostable enzyme has no significant sequence similarity to previously characterized proteins, conserved active site residues are similar to those of the pyruvoyl-dependent histidine decarboxylase enzyme, and its subunits form a similar (alphabeta)(3) complex. Homologs of PvlArgDC are found in several bacterial genomes, including those of Chlamydia spp., which have no agmatine ureohydrolase enzyme to convert agmatine (decarboxylated arginine) into putrescine. In these intracellular pathogens, PvlArgDC may function analogously to pyruvoyl-dependent histidine decarboxylase; the cells are proposed to import arginine and export agmatine, increasing the pH and affecting the host cell's metabolism. Phylogenetic analysis of Pvl- ArgDC proteins suggests that this gene has been recruited from the euryarchaeal polyamine biosynthetic pathway to function as a degradative enzyme in bacteria.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015317 Biogenic Polyamines Biogenic amines having more than one amine group. These are long-chain aliphatic compounds that contain multiple amino and/or imino groups. Because of the linear arrangement of positive charge on these molecules, polyamines bind electrostatically to ribosomes, DNA, and RNA. Polyamines, Biogenic
D017017 Methanococcus A genus of anaerobic coccoid METHANOCOCCACEAE whose organisms are motile by means of polar tufts of flagella. These methanogens are found in salt marshes, marine and estuarine sediments, and the intestinal tract of animals.
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein

Related Publications

David E Graham, and Huimin Xu, and Robert H White
April 2008, Acta crystallographica. Section D, Biological crystallography,
David E Graham, and Huimin Xu, and Robert H White
March 2003, Structure (London, England : 1993),
David E Graham, and Huimin Xu, and Robert H White
December 2000, Journal of bacteriology,
David E Graham, and Huimin Xu, and Robert H White
December 2003, Biochimica et biophysica acta,
David E Graham, and Huimin Xu, and Robert H White
January 2004, The Journal of biological chemistry,
David E Graham, and Huimin Xu, and Robert H White
September 2001, The Plant journal : for cell and molecular biology,
David E Graham, and Huimin Xu, and Robert H White
March 2016, Journal of the American Chemical Society,
David E Graham, and Huimin Xu, and Robert H White
January 1996, Microbial & comparative genomics,
David E Graham, and Huimin Xu, and Robert H White
January 2001, Methods in enzymology,
David E Graham, and Huimin Xu, and Robert H White
March 2003, European journal of biochemistry,
Copied contents to your clipboard!