GRP94-associated enzymatic activities. Resolution by chromatographic fractionation. 2002

Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.

GRP94 (gp96), which performs established functions as a molecular chaperone and immune system modulator, has been reported to display a number of intrinsic enzymatic activities, including ATP hydrolysis, protein phosphorylation, and aminopeptidase. In observing that GRP94 co-purified with bacterial beta-galactosidase through multiple chromatographic steps, we have examined the hypothesis that the reported enzymatic activities of GRP94 may reflect co-purification of contaminant enzymes, rather than intrinsic catalytic functions. In subjecting GRP94 to increasingly stringent chromatographic purification, we report that a GRP94 carboxyl-terminal directed protein kinase activity could be separated from GRP94 by heparin affinity chromatography. Analysis of the kinase substrate specificity indicates that this kinase is distinct from casein kinase II, which is known to co-purify with GRP94. Electrophoretically pure GRP94 displayed low, but significant levels of aminopeptidase activity. Further purification of GRP94 by anion exchange and heparin affinity chromatography yielded resolution of GRP94 from the aminopeptidase activity. Furthermore, exhaustive trypsinolysis of GRP94 preparations displaying aminopeptidase activity yielded complete proteolysis of GRP94 but did not affect aminopeptidase activity. These results are discussed with respect to current models for GRP94 function and the role of such co-purifying (poly)peptides in the generation of GRP94-dependent cellular immune responses.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
May 1991, Journal of chromatography,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
January 2017, Pakistan journal of pharmaceutical sciences,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
January 1979, Toxicon : official journal of the International Society on Toxinology,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
October 1974, Japanese journal of medical science & biology,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
May 1961, The Journal of biological chemistry,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
January 1977, Methods in cell biology,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
January 1972, Biokhimiia (Moscow, Russia),
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
January 1987, Developments in biological standardization,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
October 1986, Analytical biochemistry,
Robyn C Reed, and Tianli Zheng, and Christopher V Nicchitta
March 2024, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!