Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine. 1975

C E Smith, and H Warshawsky

Renewal of the cell populations of the incisor was studied in 100 gm male rats injected with a single dose of 3H-thymidine and sacrificed at various times from one hour to 32 days after injection. Radioautographs showed that a cohort of labeled cells within the enamel organ, odontoblast layer, and pulp was carried passively with the erupting incisor from the apical end towards the gingival margin where the life cycle of these cells was terminated. Labeled cells in the upper and lower incisor, although traversing different absolute lengths, were found in approximately the same functional stage of their life cycle at similar times after the injection. Thus, by one and on-half days labeled ameloblasts began inner enamel secretion and, by eight days (upper) or nine days (lower), complement outer enamel secretion. By 32 days labeled ameloblasts had traversed the entire enamel maturation zone and were located at the gingival margin. Labeled odontoblasts followed closely the movement of labeled ameloblasts. The mean rate of ameloblast migration was 567 mum/day on the upper incisor and 651 mim/day on the lower. For the odontoblasts this rate was 55 mum/day (upper) and 631 mum/day (lower). Finally, it was found that as the rat age, the duration of the life cycle for epithelial and pulp cell populations of the incisor increased because of growth within the lonitudinal axis of the tooth. It was concluded that the apical end of the incisor literally "grows backward" in the bony socket, and hence, the duration of the life cycle becomes greater simply because it takes cells longer to physically reach the gingival margin.

UI MeSH Term Description Entries
D007180 Incisor Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820) Incisors
D008297 Male Males
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009804 Odontoblasts The mesenchymal cells which line the DENTAL PULP CAVITY and produce DENTIN. They have a columnar morphology in the coronal pulp but are cuboidal in the root pulp, or when adjacent to tertiary dentin. Odontoblast
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D004658 Enamel Organ Epithelial cells surrounding the dental papilla and differentiated into three layers: the inner enamel epithelium, consisting of ameloblasts which eventually form the enamel, and the enamel pulp and external enamel epithelium, both of which atrophy and disappear before and upon eruption of the tooth, respectively. Enamel Organs,Organ, Enamel,Organs, Enamel
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000565 Ameloblasts Cylindrical epithelial cells in the innermost layer of the ENAMEL ORGAN. Their functions include contribution to the development of the dentinoenamel junction by the deposition of a layer of the matrix, thus producing the foundation for the prisms (the structural units of the DENTAL ENAMEL), and production of the matrix for the enamel prisms and interprismatic substance. (From Jablonski's Dictionary of Dentistry, 1992) Ameloblast

Related Publications

C E Smith, and H Warshawsky
March 1966, Journal of ultrastructure research,
C E Smith, and H Warshawsky
January 1984, Archives of oral biology,
C E Smith, and H Warshawsky
January 1983, Archives of oral biology,
C E Smith, and H Warshawsky
January 1984, Tissue & cell,
Copied contents to your clipboard!