New liquid chromatographic assay with electrochemical detection for the measurement of amifostine and WR1065. 2002

Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

A high-performance liquid chromatographic method (HPLC) was developed for the analysis of the radio- and chemo-protectant, amifostine and its active metabolite-WR1065 in deproteinized human whole blood and plasma. The two compounds were quantified by measuring WR1065 after two different sample pretreatment procedures. During these procedures, amifostine was quantitatively converted into WR1065, by incubating the sample at 37 degrees C for 4 h at pH<1.0. The resulting amounts of WR1065 were determined by HPLC with coulometric detection (analytical cell: E(1)=200 mV and E(2)=600 mV; guard cell: E(G)=650 mV). The WR1065 standard curve ranged from 0.37 to 50.37 microM. The lower limit of quantitation of WR1065 was 0.25 microM. The within- and between-day precisions were < or = 4.3% and < or = 6.0% for amifostine, < or = 4.4% and < or = 3.8% for WR1065, respectively. The within- and between-day accuracy ranged from 95.4 to 97.7% and 95.4 to 97.8% for amifostine, and from 97.1 to 101.7% and 97.2 to 99.7% for WR1065, respectively. This method minimizes WR1065 loss during sample preparation, and allows for rapid analysis of both compounds on one system. Furthermore, the application of a coulometric electrode is more efficient and requires less maintenance than previously published methods for the two compounds.

UI MeSH Term Description Entries
D008624 Mercaptoethylamines Ethylamines, including CYSTEAMINE, that contain a sulfhydryl group in their structure.
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004999 Amifostine A phosphorothioate proposed as a radiation-protective agent. It causes splenic vasodilation and may block autonomic ganglia. Ethiofos,Gammaphos,APAETP,Amifostine Anhydrous,Amifostine Disodium Salt,Amifostine Monohydrate,Amifostine Monohydrochloride,Amifostine Trihydrate,Aminopropyl Aminoethylthiophosphate,Aminopropylaminoethylthiophosphate,Aminopropylaminoethylthiophosphoric Acid,Ethanethiol, 2-((3-aminopropyl)amino)-, dihydrogen phosphate (ester), trihydrate,Ethiofos Anhydrous,Ethyol,NSC-296961,S-(N-(3-Aminopropyl)-2-aminoethyl)thiophosphoric Acid,WR-2721,YM-08310,NSC 296961,NSC296961,WR 2721,WR2721,YM 08310,YM08310
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
May 1997, Journal of chromatography. B, Biomedical sciences and applications,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
August 1984, Acta pharmacologica et toxicologica,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
April 1991, Journal of chromatography,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
September 1987, Journal of chromatography,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
April 1986, Journal of pharmaceutical sciences,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
June 1980, Clinical chemistry,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
June 1981, Journal of chromatography,
Feng Bai, and Mark N Kirstein, and Suzan K Hanna, and Clinton F Stewart
August 1987, Journal of chromatography,
Copied contents to your clipboard!