Pharmacological characterization of the 5-HT receptors mediating contraction and relaxation of canine isolated proximal stomach smooth muscle. 2002

P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
Heymans Institute of Pharmacology, Ghent University, Gent, Belgium. pjansse42@janbe.jnj.com

1. We aimed to characterize 5-HT receptors mediating contraction and relaxation to 5-HT in dog proximal stomach longitudinal muscle (LM) strips. 2. Of the tryptamine analogues tested, 5-HT was the most potent contractile agent at basal length, while 5-CT was the most potent relaxant of PGF(2alpha)-induced contraction. Neither the contractions to 5-HT, nor the relaxations to 5-CT were influenced by tetrodotoxin, illustrating that action potential propagation is not involved. 3. The 5-HT-induced contraction was antagonized by mesulergine (0.03 to 0.3 microM) and ketanserin (2 - 20 nM), but the antagonism was not of a simple competitive nature, indicating multiple receptor involvement. Ketanserin (3 to 30 nM) and mesulergine (30 nM) competitively antagonized the alpha-Me-5-HT-induced contraction (pK(B): 8.83+/-0.09 and pA(2): 8.25+/-0.06 respectively). These affinity values are in line with literature affinities of ketanserin and mesulergine at 5-HT(2A) receptors in various bioassays. 4. The 5-CT-induced inhibition of PGF(2alpha)-induced contraction was competitively antagonized by mesulergine (pK(B) estimate: 8.52+/-0.12) and by the selective 5-HT(7) receptor antagonist SB-269970 (pK(B) estimate: 9.36+/-0.14). Both pK(B) estimates are in line with literature affinities of these compounds for 5-HT(7) receptors. Mesulergine (30 nM) and SB-269970 (10 nM) shifted the relaxant curve to 5-HT parallel to the right in the presence of ketanserin (0.3 microM) (pA(2) estimates of 8.08+/-0.10 and 8.75+/-0.14 respectively), indicative of 5-HT(7) receptor involvement. 5. It is concluded that 5-HT induces dog proximal stomach (LM) contraction via smooth muscle 5-HT(2A) receptors and relaxation via smooth muscle 5-HT(7) receptors.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
July 1999, British journal of pharmacology,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
January 1991, Annals of the New York Academy of Sciences,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
December 1984, Neuropharmacology,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
May 1994, Naunyn-Schmiedeberg's archives of pharmacology,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
June 1999, British journal of pharmacology,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
September 2004, The Journal of urology,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
December 1995, Journal of autonomic pharmacology,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
January 1999, Gynecologic and obstetric investigation,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
September 1991, The Journal of pharmacology and experimental therapeutics,
P Janssen, and N H Prins, and A L Meulemans, and R A Lefebvre
December 1989, British journal of pharmacology,
Copied contents to your clipboard!