Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. 1975

H Taketomi, and Y Ueda, and N Gō

A lattice model of proteins is introduced. "A protein molecule" is a chain of nown-intersecting units of a given length on the two-dimensional square lattice. The copolymeric character of protein molecules is incorporated into the model in the form of specificities of inter-unit interactions. This model proved most effective for studying the statistical mechanical characteristics of protein folding, unfolding and fluctuations. The specificities of inter-unit interactions are shown to be the primary factors responsible for the all-or-none type transition from native to denatured states of globular proteins. The model has been studied by the Monte Carlo method of Metropolis et al., which is now shown applied to approximately simulating a kinetic process. In the strong limit of the specificity of the inter-unit interaction the native conformation was reached in this method by starting from an extended conformation. The possible generalization and application of this method for finding the native conformation of proteins form their amino sequence are discussed.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

H Taketomi, and Y Ueda, and N Gō
May 1979, International journal of peptide and protein research,
H Taketomi, and Y Ueda, and N Gō
March 1979, International journal of peptide and protein research,
H Taketomi, and Y Ueda, and N Gō
December 1992, Biophysical journal,
H Taketomi, and Y Ueda, and N Gō
April 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
H Taketomi, and Y Ueda, and N Gō
September 2011, Journal of the American Chemical Society,
H Taketomi, and Y Ueda, and N Gō
February 1975, Nature,
H Taketomi, and Y Ueda, and N Gō
February 1958, Archives of biochemistry and biophysics,
Copied contents to your clipboard!