Glycolipid-anchored IL-12 expressed on tumor cell surface induces antitumor immune response. 2002

Shanmugam Nagarajan, and Periasamy Selvaraj
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.

Systemic or local administration of cytokine has been used as a mode to enhance the antitumor immune response induced by many cancer vaccines. We have investigated whether the expression of cytokines on the tumor cell surface as a glycolipid (GPI)-anchored form will be effective in inducing antitumor immune response using a GPI-anchored interleukin (IL)-12 (GPI-IL-12) as a model. GPI-IL-12-induced the proliferation of concanavalin A-activated T cells and induced IFN-gamma secretion by activated and allogeneic T cells, indicating that the membrane-expressed IL-12 can stimulate T cells. GPI-IL-12 expressed on the tumor cell surface prevented tumor growth in mice in a highly tumorigenic murine mastocytoma model. These results suggest that the cell surface-expressed GPI-IL-12 can be effective in inducing antitumor immune response, and GPI-anchored cytokines expressed on the tumor cell surface may be a novel approach to deliver cytokines at the immunization site during vaccination against cancer. Furthermore, purified GPI-anchored cytokines can be used to quickly modify tumor membranes by the protein transfer method to express the desired cytokines for vaccine development.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012515 Mast-Cell Sarcoma A unifocal malignant tumor that consists of atypical pathological MAST CELLS without systemic involvement. It causes local destructive growth in organs other than in skin or bone marrow. Mastocytoma, Malignant,Sarcoma, Mast-Cell,Malignant Mastocytoma,Malignant Mastocytomas,Mast Cell Sarcoma,Mast-Cell Sarcomas,Mastocytomas, Malignant,Sarcoma, Mast Cell,Sarcomas, Mast-Cell

Related Publications

Shanmugam Nagarajan, and Periasamy Selvaraj
August 2011, Zhonghua zhong liu za zhi [Chinese journal of oncology],
Shanmugam Nagarajan, and Periasamy Selvaraj
April 1997, Journal of immunology (Baltimore, Md. : 1950),
Shanmugam Nagarajan, and Periasamy Selvaraj
July 2004, The journal of gene medicine,
Shanmugam Nagarajan, and Periasamy Selvaraj
October 2013, Cancer gene therapy,
Shanmugam Nagarajan, and Periasamy Selvaraj
January 2010, Clinical & developmental immunology,
Shanmugam Nagarajan, and Periasamy Selvaraj
July 1999, Proceedings of the National Academy of Sciences of the United States of America,
Shanmugam Nagarajan, and Periasamy Selvaraj
February 2002, International journal of cancer,
Copied contents to your clipboard!