Transition state stabilization by the N-terminal anticodon-binding domain of lysyl-tRNA synthetase. 2002

Teisuke Takita, and Kuniyo Inouye
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan. takita@kais.kyoto-u.ac.jp

Lysyl-tRNA synthetase from Bacillus stearothermophilus (B.s. LysRS) (EC ) catalyzes aminoacylation of tRNA(Lys) with l-lysine, in which l-lysine was first activated with ATP to yield an enzyme (lysyladenylate complex), and then the lysine molecule was transferred from the complex to tRNA(Lys). B.s. LysRS is a homodimeric enzyme with a subunit that consists of two domains, an N-terminal tRNA anticodon-binding domain (TAB-ND: Ser(1)-Pro(144)) and a C-terminal Class II-specific catalytic domain (CAT-CD: Lys(151)-Lys(493)). CAT-CD alone retained catalytic activity, although at a low level; TAB-ND alone showed no activity. Size exclusion chromatography revealed that CAT-CD exists as a dimer, whereas TAB-ND was a monomer. The formation of a complex consisting of these domains was detected with the guidance of surface plasmon resonance. In accordance with this, the addition of TAB-ND to CAT-CD significantly enhanced both the l-lysine activation and the tRNA aminoacylation reactions. Kinetic analysis showed that deletion of TAB-ND resulted in a significant destabilization of the transition state of CAT-CD in the l-lysine activation reaction but had little effect on the ground state of substrate binding. A significant role of a cross-subunit interaction in the enzyme between TAB-ND and CAT-CD was proposed for the stabilization of the transition state in the l-lysine activation reaction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008250 Lysine-tRNA Ligase An enzyme that activates lysine with its specific transfer RNA. EC 6.1.1.6. Lysyl T RNA Synthetase,Lys-tRNA Ligase,Lysyl-tRNA Synthetase,Ligase, Lys-tRNA,Ligase, Lysine-tRNA,Lys tRNA Ligase,Lysine tRNA Ligase,Lysyl tRNA Synthetase,Synthetase, Lysyl-tRNA
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

Teisuke Takita, and Kuniyo Inouye
January 2002, The Journal of biological chemistry,
Teisuke Takita, and Kuniyo Inouye
February 2017, Acta crystallographica. Section F, Structural biology communications,
Teisuke Takita, and Kuniyo Inouye
October 2018, International journal of molecular sciences,
Teisuke Takita, and Kuniyo Inouye
October 2012, Biomolecular NMR assignments,
Teisuke Takita, and Kuniyo Inouye
December 1992, FEBS letters,
Teisuke Takita, and Kuniyo Inouye
December 2016, RNA (New York, N.Y.),
Teisuke Takita, and Kuniyo Inouye
October 2013, Biomolecular NMR assignments,
Copied contents to your clipboard!