Altered presynaptic function in monoaminergic neurons of monoamine oxidase-A knockout mice. 2002

Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, Barts and The London School of Medicine and Dentistry, Alexandra Wing, Royal London Hospital, Whitechapel, London E1 1BB, UK.

Monoamine oxidase-A knockout (MAO-A KO) mice have elevated brain serotonin (5-HT) and noradrenaline (NA) levels, and one would therefore anticipate increased monoamine release and compensatory changes in other aspects of presynaptic monoamine function. In this study we used voltammetry in brain slices from the locus coeruleus (LC), dorsal raphe (DRN) and striatum (CPu) in 7-week-old MAO-A KO and C3H control mice to measure stimulated monoamine efflux and its control by amine transporters and autoreceptors. In LC, peak NA efflux on stimulation (99 pulses, 100 Hz) was higher in MAO-A KO than C3H mice (938 +/- 58 nm cf. 511 +/- 42 nm; P < 0.001). The NA uptake half time (t(1/2)) was longer in MAO-A KO than in C3H mice (6.0 +/- 0.9 s cf. 1.9 +/- 0.3 s; P < 0.001) and the selective NA reuptake inhibitor desipramine (50 nm) had a smaller effect in MAO-A KO mice. NA transporter binding was significantly lower in the LC of MAO-A KO mice compared to C3H controls (P < 0.01) but not in the DRN. The alpha 2 agonist dexmedetomidine (10 nm) decreased stimulated NA efflux more in C3H than in MAO-A KO mice (73.3% cf. 29.6% inhibition, P < 0.001). In DRN, peak 5-HT efflux on stimulation (99 pulses, 100 Hz) was greater (P < 0.01) in MAO-A KO (262 +/- 44 nm) than C3H mice (157 +/- 16 nm). Moreover, 5-HT uptake t(1/2) was longer (P < 0.05) in MAO-A KO than in C3H mice (8.8 +/- 1.1 s cf. 4.9 +/- 0.6 s, P < 0.05) and the effect of citalopram (75 nm) was attenuated in MAO-A KOs. Serotonin transporter binding was also lower in both the DRN and LC of MAO-A KO mice. The 5-HT(1A) agonist 8-OH-DPAT (1 microm) decreased 5-HT efflux more in C3H than in MAO-A KO mice (38.3% inhibition cf. 21.6%, P < 0.001). In contrast, there were no significant differences between MAO-A KO and C3H mice in CPu dopamine efflux and uptake and the effect of the D(2/3) agonist quinpirole was similar in the two strains. In summary, MAO-A KO mice show major dysregulation of monoaminergic presynaptic mechanisms such as autoreceptor control and transporter kinetics.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
August 2017, Brain research,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
May 2021, Journal of neurophysiology,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
September 1999, The international journal of neuropsychopharmacology,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
December 2012, Neuropharmacology,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
April 2003, Brain research. Developmental brain research,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
September 1983, Naunyn-Schmiedeberg's archives of pharmacology,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
August 1986, Journal of neurochemistry,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
January 2001, Neuroscience and behavioral physiology,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
January 2000, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Catarina A Owesson, and Sarah E Hopwood, and Luis F Callado, and Isabelle Seif, and Daniel P McLaughlin, and Jonathan A Stamford
September 2008, Brain research,
Copied contents to your clipboard!