Ca2+/calmodulin-dependent protein kinase regulates GABA-activated Cl- current in cockroach dorsal unpaired median neurons. 2002

Philippe Alix, and Francoise Grolleau, and Bernard Hue
Laboratoire de Neurophysiologie Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 2647, Université d'Angers, F-49045 Angers Cedex, France.

We studied gamma-aminobutyric acid (GABA)-mediated currents in short-term cultured dorsal unpaired median (DUM) neurons of cockroach Periplaneta americana using the whole cell patch-clamp technique in symmetrical chloride solutions. All DUM neurons voltage-clamped at -50 mV displayed inward currents (I(GABA)) when 10(-4) M of GABA was applied by pneumatic pressure-ejection pulses. The semi-logarithmic curve of I(GABA) amplitude versus the ejection time yielded a Hill coefficient of 4.0. I(GABA) was chloride (Cl-) because the reversal potential given by the current-voltage (I-V) curve varied according to the value predicted by the Nernst equation for Cl- dependence. In addition, I(GABA) was almost completely blocked by bath application of the chloride channel blockers picrotoxin (PTX) or 3,3-bis(trifluoromethyl)bicyclo-[2,2,1]heptane-2,2-diacarbonitrile (BIDN). The I-V curve for I(GABA) displayed a unexpected biphasic aspect and was best fitted by two linear regressions giving two slope conductances of 35.6 +/- 2.1 and 80.9 +/- 4.1 nS for potentials ranging from 0 to -30 and -30 to -70 mV, respectively. At -50 mV, the current amplitude was decreased by cadmium chloride (CdCl2, 10(-3) M) and calcium-free solution. The semi-logarithmic curve for CdCl2-resistant I(GABA) gave a Hill coefficient of 2.4. Hyperpolarizing voltage step from -50 to -80 mV was known to increase calcium influx through calcium-resting channels. According to this protocol, a significant increase of I(GABA) amplitude was observed. However, this effect was never obtained when the same protocol was applied on cell body pretreated with CdCl2. When the calmodulin blocker N-(6-aminohexyl)-5-chloro-1-naphtalene-sulfonamide or the calcium-calmodulin-dependent protein kinase blocker 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) was added in the pipette solution, I(GABA) amplitude was decreased. Pressure ejection application of the cis-4-aminocrotonic acid (CACA) on DUM neuron cell body held at -50 mV, evoked a Cl- inward current which was insensitive to CdCl2. The Hill plot yielded a Hill coefficient of 2.3, and the I-V curve was always linear in the negative potential range with a slope conductance of 32.4 +/- 1.1 nS. These results, similar to those obtained with GABA in the presence of CdCl2 and KN-62, indicated that CACA activated one subtype of GABA receptor. Our study demonstrated that at least two distinct subtypes of Cl--dependent GABA receptors were expressed in DUM neurons, one of which is regulated by an intracellular Ca2+-dependent mechanism via a calcium-dependent protein kinase. The consequences of the modulatory action of Ca2+ in GABA receptors function and their sensitivity to insecticide are discussed.

UI MeSH Term Description Entries
D007306 Insecticides Pesticides designed to control insects that are harmful to man. The insects may be directly harmful, as those acting as disease vectors, or indirectly harmful, as destroyers of crops, food products, or textile fabrics. Insecticide
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010526 Periplaneta A genus in the family Blattidae containing several species, the most common being P. americana, the American cockroach. Periplaneta americana,American Cockroach,American Cockroaches,American Cockroache,American Cockroachs,Cockroach, American,Cockroache, American,Cockroaches, American,Cockroachs, American,Periplaneta americanas,Periplanetas,americana, Periplaneta
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D017871 Calcium-Calmodulin-Dependent Protein Kinases A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277) Ca(2+)-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinases,Multifunctional Calcium-Calmodulin-Dependent Protein Kinase,Restricted Calcium-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinases, Multifunctional,Calcium-Calmodulin-Dependent Protein Kinases, Restricted,Calmodulin-Dependent Multiprotein Kinase,Calmodulin-Kinase,Cam-MPK,Multifunctional Calcium-Calmodulin-Dependent Protein Kinases,Restricted Calcium-Calmodulin-Dependent Protein Kinases,Calcium Calmodulin Dependent Protein Kinase,Calcium Calmodulin Dependent Protein Kinases, Multifunctional,Calcium Calmodulin Dependent Protein Kinases, Restricted,Calmodulin Dependent Multiprotein Kinase,Calmodulin Dependent Protein Kinase,Calmodulin Dependent Protein Kinases,Calmodulin Kinase,Cam MPK,Kinase, Calcium-Calmodulin-Dependent Protein,Kinase, Calmodulin-Dependent Protein,Multifunctional Calcium Calmodulin Dependent Protein Kinase,Multifunctional Calcium Calmodulin Dependent Protein Kinases,Multiprotein Kinase, Calmodulin-Dependent,Protein Kinase, Calcium-Calmodulin-Dependent,Protein Kinase, Calmodulin-Dependent,Protein Kinases, Calcium-Calmodulin-Dependent,Protein Kinases, Calmodulin-Dependent,Restricted Calcium Calmodulin Dependent Protein Kinase,Restricted Calcium Calmodulin Dependent Protein Kinases

Related Publications

Philippe Alix, and Francoise Grolleau, and Bernard Hue
November 1984, Journal of neurobiology,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
August 1996, Journal of neurophysiology,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
November 1982, Journal of neurobiology,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
May 2016, Experimental and therapeutic medicine,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
June 1986, Proceedings of the National Academy of Sciences of the United States of America,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
September 2003, The Journal of biological chemistry,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
December 2006, The Journal of clinical investigation,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
February 2002, Zoological science,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
January 2005, The Journal of biological chemistry,
Philippe Alix, and Francoise Grolleau, and Bernard Hue
August 2005, The Journal of biological chemistry,
Copied contents to your clipboard!