Stimulation of microsomal drug oxidation activities by incorporation into microsomes of purified NADPH-cytochrome c (P-450) reductase. 1979

M Kitada, and K Kubota, and H Kitagawa, and T Kamataki

The effects of addition of purified NADPH-cytochrome c (P-450) reductase on microsomal activities of aniline hydroxylation, p-phenetidine O-deethylation and ethylmorphine and aminopyrine N-demethylations were investigated utilizing microsomes from untreated, phenobarbital-treated and 3-methylcholanthrene-treated rats. The purified reductase was incorporated into microsomes. The drug oxidation activities were increased by the fortification of microsomes with the reductase while the extent of increase in the activities varied with the substrate and microsomes employed. The most pronounced enhancement was seen in p-phenetidine O-deethylation, followed by aniline hydroxylation and aminopyrine and ethylmorphine N-demethylations. The enhancement was more remarkable in microsomes from rats treated with 3-methylcholanthrene or phenobarbital. alpha-Naphthoflavone inhibited p-phenetidine O-deethylation activity markedly when the reductase was incorporated into microsomes, indicating that a larger amount of a species of cytochrome P-450 sensitive to the inhibitor was capable of participating in the oxidation of this substrate in the presence of the added reductase. One of the two Km values seen with higher concentrations of aniline or aminopyrine was altered by the fortification of microsomes with the purified NADPH cytochrome c (P-450) reductase. From these results, we propose that NADPH-cytochrome c (P-450) reductase transfers electrons to the selected one or two of multiple species of cytochrome P-450 more preferentially depending upon the substrate and the concentration of the substrate in microsomal membranes.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
September 1979, Biochemical pharmacology,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
April 1978, The Journal of biological chemistry,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
July 1979, Archives of biochemistry and biophysics,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
January 1978, Archives of biochemistry and biophysics,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
May 1979, The Journal of biological chemistry,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
July 1979, Biochemical pharmacology,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
January 1973, Drug metabolism and disposition: the biological fate of chemicals,
M Kitada, and K Kubota, and H Kitagawa, and T Kamataki
June 1975, FEBS letters,
Copied contents to your clipboard!