DNA polymerases of rat liver. Partial characterization and effect of various inhibitors. 1975

F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara

Three distinct DNA-dependent DNA polymerase activities have been partially purified from normal rat liver. Soluble activities are separable into two distinct fractions (P1 and P2) by phosphocellulose chromatography. A low-molecular-weight DNA polymerase was isolated from purified nuclei. The enzymes were characterized according to chromatographic and sedimentation behavior, enzymological properties, and response to various inhibitors. The results indicate that fraction P1 corresponds to the high-molecular-weight enzyme and suggest that polymerase P2 may be derived from partial dissociation of the high-molecular-weight enzyme. The molecular weight of polymerase P1 was estimated to be about 250 000 by Sephadex column chromatography. Both fraction P2 and nuclear DNA polymerase appeared to be low-molecular-weight enzymes. However, the molecular size of these activities was apparently different. The estimated molecular weights of nuclear and P2 enzyme are about 40 000 and 25 000, respectively. As with the nuclear enzyme, polymerase P2 (but not P1) appeared to be free of detectable exonuclease activity. All of these polymerases showed a marked preference for initiated polydeoxyribonucleotide templates. The rat liver polymerases differed in their ability to use poly[d(A-T)-A1 primer-template, as is shown by the ratios of their activity with this synthetic polymer to that with activated DNA: 0.5, 2.75, and 1.34 for P1, P2, and nuclear polymerase, respectively. Denatured DNA was a poor template for both enzymes P1 and P2, but it was inert as template for the nuclear enzyme. Although each of these polymerases required all four deoxynucleoside triphosphates for maximal activity, they catalyzed a high rate of synthesis in the absence of one or more deoxynucleoside triphosphates. Such a 'limited' synthesis was much more extensive for polymerase P2 and nuclear enzyme than for P1 was the most sensitive of the three to sulphydryl reagents, ehtidium bromide, heparin, and single-stranded DNA. The responses of P2 and nuclear enzymes to various inhibitors were very similar. However, these two enzymes respond differently to heat and high ionic strength.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
May 1973, Cancer research,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
August 1978, Indian journal of biochemistry & biophysics,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
January 1970, Advances in enzyme regulation,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
February 1984, Molecular and biochemical parasitology,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
August 1971, Canadian journal of biochemistry,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
September 2000, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
January 1986, Archivos de investigacion medica,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
March 1979, Cell and tissue kinetics,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
September 1975, Biochimica et biophysica acta,
F Zunino, and R Gambetta, and A Colombo, and G Luoni, and A Zaccara
March 2001, Cell biochemistry and function,
Copied contents to your clipboard!