Desensitization of endothelial nitric oxide synthase by receptor agonists. 2002

Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria.

Stimulation of endothelial cells with receptor agonists leads to an activation of endothelial nitric oxide synthase (eNOS) that only lasts for a short duration. A more prolonged effect, however, is observed in response to non-receptor agonists, such as Ca2+ ionophores or thapsigargin (TG). To investigate the molecular mechanisms underlying the rapid deactivation of eNOS after stimulation with receptor agonists, we measured the time courses of eNOS activation and intracellular free Ca2+ concentration ([Ca2+]i) in response to bradykinin (BK) and ATP. Incubation of porcine aortic endothelial cells with BK (1 microM) in the presence of 3 mM extracellular Ca2+ increased [Ca2+]i from 110 to 350 nM and enhanced the rate of l-[3H]citrulline formation from 0.1 to 5 fmol/min. In the absence of extracellular Ca2+, the BK-induced increase in [Ca2+]i was only marginal (from 30 to 110 nM) and not sufficient to activate eNOS. When Ca(2+) (final concentration 3 mM) was added 10 min after BK, [Ca2+]i increased to 330 nM within 3 min, but interestingly, formation of l-[3H]citrulline was not detectable. A similar phenomenon was observed with ATP, but not with Ca2+ ionophores or TG. This indicates that stimulation of endothelial cells with receptor agonists leads to desensitization of eNOS, which renders the enzyme insensitive to activation by subsequent increases in [Ca2+]i. However, when ATP was added to BK-pretreated cells or, conversely, BK to ATP-pretreated cells, activation of eNOS was comparable with that of untreated cells, suggesting that BK and ATP affect different pools of eNOS. The desensitization of eNOS was reversible, since removal of ATP or BK from the incubation buffer restored the response to the respective agonist within 20 min. In addition to the transient Ca2+ signal, desensitization of eNOS may represent a further mechanism by which endothelial cells rapidly terminate receptor-dependent NO formation.

UI MeSH Term Description Entries
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D052250 Nitric Oxide Synthase Type III A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in ENDOTHELIAL CELLS. ECNOS Enzyme,ENOS Enzyme,Endothelial Constitutive Nitric Oxide Synthase,Endothelial Nitric Oxide Synthase,Nitric Oxide Synthase, Type III
D019001 Nitric Oxide Synthase An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE. NO Synthase,Nitric-Oxide Synthase,Nitric-Oxide Synthetase,Nitric Oxide Synthetase,Oxide Synthase, Nitric,Synthase, Nitric Oxide
D019284 Thapsigargin A sesquiterpene lactone found in roots of THAPSIA. It inhibits SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES.

Related Publications

Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
June 1993, Hypertension (Dallas, Tex. : 1979),
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
April 2004, Arteriosclerosis, thrombosis, and vascular biology,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
October 1998, The Journal of biological chemistry,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
April 2010, American journal of physiology. Regulatory, integrative and comparative physiology,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
January 2011, Contributions to nephrology,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
April 2004, Arteriosclerosis, thrombosis, and vascular biology,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
September 2007, The Journal of biological chemistry,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
September 2007, Free radical biology & medicine,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
June 1995, The American journal of physiology,
Sabine Wagner, and Klaus Groschner, and Bernd Mayer, and Kurt Schmidt
March 2007, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!