Peroxynitrite stimulates L-arginine transport system y(+) in glial cells. A potential mechanism for replenishing neuronal L-arginine. 2002

Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
Departamento de Bioquimica y Biologia Molecular, Universidad de Salamanca, 37007 Salamanca, Spain.

We have reported previously that peroxynitrite stimulates L-arginine release from astrocytes, but the mechanism responsible for such an effect remains elusive. To explore this issue, we studied the regulation of L-[(3)H]arginine transport by either exogenous or endogenous peroxynitrite in glial cells. A 2-fold peroxynitrite-mediated stimulation of l-arginine release in C6 cells was found to be Na(+)-independent, was prevented by 5 mm L-arginine and, although only in the presence of Na(+), was blocked by 5 mm L-alanine or L-leucine. Peroxynitrite-mediated stimulation of L-arginine uptake was trans-stimulated by 10 mm L-arginine and was inhibited in a dose-dependent fashion (k(i) of approximately 40 microm) by the system y(+) inhibitor N-ethylmaleimide in C6 cells. Endogenous production of peroxynitrite in lipopolysaccharide-treated astrocytes triggered an increased L-arginine transport activity without affecting Cat1 l-arginine transporter mRNA levels. However, Western blot analyses of peroxynitrite-treated astrocytes and C6 glial cells revealed a 3-nitrotyrosinated anti-Cat1-immunopositive band, strongly suggesting peroxynitrite-mediated Cat1 nitration. Furthermore, peroxynitrite stimulation of L-arginine release was abolished in fibroblast cells homozygous for a targeted inactivation of the Cat1 gene. Finally, peroxynitrite-triggered L-arginine released from astrocytes was efficiently taken up by neurons in an insert-based co-culture system. These results strongly suggest that peroxynitrite-mediated activation of the Cat1 transporter in glial cells may serve as a mechanism focused to replenish L-arginine in the neighboring neurons.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018920 Coculture Techniques A technique of culturing mixed cell types in vitro to allow their synergistic or antagonistic interactions, such as on CELL DIFFERENTIATION or APOPTOSIS. Coculture can be of different types of cells, tissues, or organs from normal or disease states. Cocultivation,Co-culture,Coculture,Co culture,Co-cultures,Cocultivations,Coculture Technique,Cocultures

Related Publications

Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
July 2004, FEBS letters,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
July 1994, Glia,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
August 2005, Biochimica et biophysica acta,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
February 1997, The Journal of physiology,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
January 2002, Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
October 2010, Neurochemistry international,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
December 2009, The international journal of biochemistry & cell biology,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
January 1994, American journal of surgery,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
September 2011, Biochemical and biophysical research communications,
Victoria Vega-Agapito, and Angeles Almeida, and Maria Hatzoglou, and Juan P Bolaños
December 2000, American journal of physiology. Cell physiology,
Copied contents to your clipboard!