Stability of protein and ribonucleic acid in Bacillus stearothermophilus. 1975

T P Coultate, and T K Sundaram, and J J Cazzulo

The turnover of protein in a prototrophic strain of Bacillus stearothermophilus during exponential growth in a salts medium with glucose or succinate as carbon source was about 4 %/h and in a richer nutrient broth medium about 23 %/h. Protein degradation under non-growing conditions conformed to a similar pattern. The turnover of RNA (non-messenger) was about 1 %/h in salts medium and about 9 %/h in nutrient broth. The turnover of protein and RNA in the thermophile is thus moderate rather than massive. This conclusion was confirmed by measurement of the decay of a specific enzyme, isocitrate lyase, in the prototroph and of the overall protein turnover in a non-prototrophic strain of B. stearothermophilus. The half-lives of a number of enzyme systems in intact cells of the prototrophic thermophile at its optimum growth temperature showed some variation but indicated a significant rate of inactivation. Such decay of protein in vivo apparently accounts for the moderate protein turnover observed during growth.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D007523 Isocitrates Derivatives of isocitric acid, a structural isomer of CITRIC ACID, including its salts and esters.
D007652 Oxo-Acid-Lyases Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3. Ketoacid-Lyases,Ketoacid Lyases,Oxo Acid Lyases
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D011766 Pyruvate Carboxylase A biotin-dependent enzyme belonging to the ligase family that catalyzes the addition of CARBON DIOXIDE to pyruvate. It is occurs in both plants and animals. Deficiency of this enzyme causes severe psychomotor retardation and ACIDOSIS, LACTIC in infants. EC 6.4.1.1. Carboxylase, Pyruvate
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D001411 Geobacillus stearothermophilus A species of GRAM-POSITIVE ENDOSPORE-FORMING BACTERIA in the family BACILLACEAE, found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products. Bacillus stearothermophilus,Bacillus thermoliquefaciens
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

T P Coultate, and T K Sundaram, and J J Cazzulo
May 1967, Journal of bacteriology,
T P Coultate, and T K Sundaram, and J J Cazzulo
January 1966, Journal of bacteriology,
T P Coultate, and T K Sundaram, and J J Cazzulo
January 1980, European journal of biochemistry,
T P Coultate, and T K Sundaram, and J J Cazzulo
November 1966, Archives internationales de physiologie et de biochimie,
T P Coultate, and T K Sundaram, and J J Cazzulo
July 1964, Biochimica et biophysica acta,
T P Coultate, and T K Sundaram, and J J Cazzulo
January 1972, European journal of biochemistry,
T P Coultate, and T K Sundaram, and J J Cazzulo
August 1971, Journal of bacteriology,
T P Coultate, and T K Sundaram, and J J Cazzulo
June 1969, The Biochemical journal,
T P Coultate, and T K Sundaram, and J J Cazzulo
October 1972, European journal of biochemistry,
T P Coultate, and T K Sundaram, and J J Cazzulo
May 1976, The Journal of biological chemistry,
Copied contents to your clipboard!