Propofol in rats: testing for nonlinear pharmacokinetics and modelling acute tolerance to EEG effects. 2002

H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
University of Erlangen-Nuremberg, Department of Anaesthesiology, Erlangen, Germany. harald.ihmsen@kfa.imed.uni-erlangen.de

OBJECTIVE Pharmacokinetics of propofol in rats have usually been described using linear models. Furthermore, there are only a few investigations for a pharmacodynamic model of the electroencephalographic effects of propofol in rats. We investigated pharmacokinetics and pharmacodynamics of propofol in rats with special regard to linearity in pharmacokinetics and development of tolerance. METHODS Twelve adult male Sprague-Dawley rats received propofol in three successive infusion periods of 30 min each with infusion rates of 0.5, 1 and 0.5 mg kg(-1) min(-1). Propofol plasma concentrations were determined from arterial blood samples. Pharmacokinetics were tested for linearity using the ratio of the concentrations at the end of the first and second infusion interval as a model independent criterion. Several linear and nonlinear models were investigated with population pharmacokinetic analysis. Pharmacodynamics were analysed using the median frequency of the electroencephalographic power spectrum as a quantitative measure of the hypnotic effect. RESULTS Pharmacokinetics were found to be nonlinear and were best described by a two-compartment model with Michaelis-Menten elimination (Vm = 2.17 microg mL(-1) min(-1), Km = 2.65 microg mL(-1), k12 = 0.30 min(-1), k21 0.063 min(-1), Vc = 0.13 L). Acute tolerance to the electroencephalographic effect of propofol was observed. The hypnotic effect was best described by a sigmoid Emax model (E0 = 17.8 Hz, Emax = 17.7 Hz, EC50 = 4.1 microg mL(-1), gamma = 2.3, ke0 = 0.36 min(-1)) with competitive antagonism of propofol and a hypothetical drug in an additional tolerance compartment. CONCLUSIONS For the applied infusion scheme, propofol pharmacokinetics in rats were nonlinear and a development of tolerance to the electroencephalographic effect of propofol was observed during an infusion time of 90 min.

UI MeSH Term Description Entries
D008297 Male Males
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015742 Propofol An intravenous anesthetic agent which has the advantage of a very rapid onset after infusion or bolus injection plus a very short recovery period of a couple of minutes. (From Smith and Reynard, Textbook of Pharmacology, 1992, 1st ed, p206). Propofol has been used as ANTICONVULSANTS and ANTIEMETICS. Disoprofol,2,6-Bis(1-methylethyl)phenol,2,6-Diisopropylphenol,Aquafol,Diprivan,Disoprivan,Fresofol,ICI-35,868,ICI-35868,Ivofol,Propofol Abbott,Propofol Fresenius,Propofol MCT,Propofol Rovi,Propofol-Lipuro,Recofol,2,6 Diisopropylphenol,ICI 35,868,ICI 35868,ICI35,868,ICI35868
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017711 Nonlinear Dynamics The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos. Chaos Theory,Models, Nonlinear,Non-linear Dynamics,Non-linear Models,Chaos Theories,Dynamics, Non-linear,Dynamics, Nonlinear,Model, Non-linear,Model, Nonlinear,Models, Non-linear,Non linear Dynamics,Non linear Models,Non-linear Dynamic,Non-linear Model,Nonlinear Dynamic,Nonlinear Model,Nonlinear Models,Theories, Chaos,Theory, Chaos

Related Publications

H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
May 2003, European journal of anaesthesiology,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
February 2004, British journal of clinical pharmacology,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
January 1994, British journal of anaesthesia,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
October 2018, Journal of pharmacokinetics and pharmacodynamics,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
August 1995, Alcoholism, clinical and experimental research,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
August 2018, Journal of pharmacokinetics and pharmacodynamics,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
December 2019, Theoretical biology & medical modelling,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
January 2010, Biological & pharmaceutical bulletin,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
June 1988, The Journal of pharmacology and experimental therapeutics,
H Ihmsen, and A Tzabazis, and M Schywalsky, and H Schwilden
February 2014, European journal of clinical pharmacology,
Copied contents to your clipboard!