Effects of rod activity on color perception with light adaptation. 2002

Bjørn Stabell, and Ulf Stabell
Department of Psychology, University of Oslo, Blindern, Norway.

To investigate the effect of rod activity on color perception with light adaptation, chromaticity shifts of monochromatic test lights were measured as a function of background field intensity at 17 deg in the nasal field of view. The measurements were performed both after complete dark adaptation and during the cone-plateau period at a mesopic test intensity level of 15 photopic trolands. To clarify the mechanisms underlying the chromaticity shifts obtained, six supplementary experiments were performed. The results of the experiments strongly suggest that at scotopic background intensities, light adaptation of rods, both within and adjacent to the test area, may reduce rod signals triggered by the test light and thereby produce marked chromaticity shifts with light adaptation. At mesopic background intensities, cones in the background field become activated and may influence the chromaticity shift with light adaptation both by suppressing signals from rods elicited by the test light and by producing a selective chromatic adaptation.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D005584 Fovea Centralis An area approximately 1.5 millimeters in diameter within the macula lutea where the retina thins out greatly because of the oblique shifting of all layers except the pigment epithelium layer. It includes the sloping walls of the fovea (clivus) and contains a few rods in its periphery. In its center (foveola) are the cones most adapted to yield high visual acuity, each cone being connected to only one ganglion cell. (Cline et al., Dictionary of Visual Science, 4th ed)
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D017948 Retinal Rod Photoreceptor Cells Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal
D017949 Retinal Cone Photoreceptor Cells Photosensitive afferent neurons located primarily within the FOVEA CENTRALIS of the MACULA LUTEA. There are three major types of cone cells (red, blue, and green) whose photopigments have different spectral sensitivity curves. Retinal cone cells operate in daylight vision (at photopic intensities) providing color recognition and central visual acuity. Cone Photoreceptors,Cones (Retina),Cone Photoreceptor Cells,Photoreceptors, Cone,Retinal Cone,Retinal Cone Cells,Retinal Cone Photoreceptors,Cell, Cone Photoreceptor,Cell, Retinal Cone,Cells, Cone Photoreceptor,Cells, Retinal Cone,Cone (Retina),Cone Cell, Retinal,Cone Cells, Retinal,Cone Photoreceptor,Cone Photoreceptor Cell,Cone Photoreceptor, Retinal,Cone Photoreceptors, Retinal,Cone, Retinal,Cones, Retinal,Photoreceptor Cell, Cone,Photoreceptor Cells, Cone,Photoreceptor, Cone,Photoreceptor, Retinal Cone,Photoreceptors, Retinal Cone,Retinal Cone Cell,Retinal Cone Photoreceptor,Retinal Cones

Related Publications

Bjørn Stabell, and Ulf Stabell
November 2008, Vision research,
Bjørn Stabell, and Ulf Stabell
March 1952, Journal of the Optical Society of America,
Bjørn Stabell, and Ulf Stabell
September 2012, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
Bjørn Stabell, and Ulf Stabell
June 1974, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
Bjørn Stabell, and Ulf Stabell
September 1952, Journal of the Optical Society of America,
Bjørn Stabell, and Ulf Stabell
January 1987, Vision research,
Bjørn Stabell, and Ulf Stabell
August 1977, The Journal of physiology,
Bjørn Stabell, and Ulf Stabell
June 1988, Revue francaise des prothesistes dentaires,
Bjørn Stabell, and Ulf Stabell
June 2023, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!