Freeze-drying from tertiary butanol in the preparation of endocardium for scanning electron microscopy. 1975

E E Wheeler, and J B Gavin, and R N Seelye

The scanning electron microscope appearances and shrinkage of blocks of canine endocardium prepared by freeze-drying directly, by freeze-drying after replacing tissue water with tertiary butanol (2-methyl propan-2-ol) and by critical point drying were compared. All three methods demonstrated endothelial cells which showed nuclear prominences, microvilli and intercellular boundaries. The microvilli varied in size and number from dog to dog but were generally less well defined in specimens freeze-dried from water. Shrinkage due to t-butanol dehydration was significantly less than that which occurred in ethanol in the critical point drying method. Overall the reduction in surface area was significantly less in specimens freeze-dried directly at -65 C (6.8%) than in those dried from t-butanol at -20 C (15.4%) and those prepared bly critical point drying (22.1%). However the amount of shrinkage observed in t-butanol treated tissue was not significantly different from that which was critical point dried. It was not possible to distinguish between comparable samples prepared by these two methods on the basis of their scanning electron microscopic appearances. Thus the relative simplicity and convenience of the t-butanol method, together with its saving of time, its use of standard freeze-drying equipment and the avoidance of ice-crystal artefact justify its consideration as an alternative method of preparing wet biological tissue for scanning electron microscopy.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004699 Endocardium The innermost layer of the heart, comprised of endothelial cells. Endocardiums
D005612 Freeze Drying Method of tissue preparation in which the tissue specimen is frozen and then dehydrated at low temperature in a high vacuum. This method is also used for dehydrating pharmaceutical and food products. Lyophilization,Drying, Freeze,Dryings, Freeze,Freeze Dryings,Lyophilizations
D000440 Butanols Isomeric forms and derivatives of butanol (C4H9OH). Alcohols, Butyl,Butanol,Butylhydroxides,Hydroxybutanes,Butyl Alcohols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013048 Specimen Handling Procedures for collecting, preserving, and transporting of specimens sufficiently stable to provide accurate and precise results suitable for clinical interpretation. Specimen Collection,Collection, Specimen,Collections, Specimen,Handling, Specimen,Handlings, Specimen,Specimen Collections,Specimen Handlings

Related Publications

E E Wheeler, and J B Gavin, and R N Seelye
August 1973, American journal of clinical pathology,
E E Wheeler, and J B Gavin, and R N Seelye
May 1989, Journal of electron microscopy technique,
E E Wheeler, and J B Gavin, and R N Seelye
April 1979, Cryobiology,
E E Wheeler, and J B Gavin, and R N Seelye
December 1955, Archives of biochemistry and biophysics,
E E Wheeler, and J B Gavin, and R N Seelye
April 1977, The Anatomical record,
E E Wheeler, and J B Gavin, and R N Seelye
December 1991, Journal of electron microscopy technique,
E E Wheeler, and J B Gavin, and R N Seelye
July 1995, Dental materials : official publication of the Academy of Dental Materials,
E E Wheeler, and J B Gavin, and R N Seelye
September 1980, Journal of ultrastructure research,
E E Wheeler, and J B Gavin, and R N Seelye
January 1970, Stain technology,
E E Wheeler, and J B Gavin, and R N Seelye
November 1972, Microscopica acta,
Copied contents to your clipboard!