Single molecule imaging of supported planar lipid bilayer--reconstituted human insulin receptors by in situ scanning probe microscopy. 2002

Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
Department of Biochemistry, University of Toronto, 4 Taddle Creek Road, Toronto, Ont., Canada M5S 3G9.

A 480-kDa disulfide-linked heterodimer single-pass transmembrane protein, the insulin receptor, is autophosphorylated upon insulin binding to its extracellular domain. Remarkably, the structural basis for this activation process remained largely unknown until the recent cryoelectron microscopy studies of the insulin-insulin receptor complex by Luo et al. [Science 285 (1999) 1077]. We report here the results of an in situ study by high-resolution scanning probe microscopy of the full-length insulin receptor reconstituted within supported planar lipid bilayers. Our preliminary studies confirm that (1) the intact receptor can be reconstituted constitutively within a lipid vesicle and (2) fusion of the receptor-containing vesicles to mica resulted in the formation of molecular flat 5.5-nm-thick supported planar bilayers populated by two populations of protrusions, the shape and size of which are consistent with those of the insulin receptor's intra- and extracellular domains as modeled by the cryo-EM data of Ottensmeyer et al. [Biochemistry 39 (2000) 12103]. These results establish a framework for real-time studies of insulin-insulin receptor binding by in situ SPM and single molecule force spectroscopy.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000538 Aluminum Silicates Any of the numerous types of clay which contain varying proportions of Al2O3 and SiO2. They are made synthetically by heating aluminum fluoride at 1000-2000 degrees C with silica and water vapor. (From Hawley's Condensed Chemical Dictionary, 11th ed) Aluminum Silicate,Silicate, Aluminum,Silicates, Aluminum
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies

Related Publications

Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
August 2022, Membranes,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
October 2015, Journal of visualized experiments : JoVE,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
February 2006, The Analyst,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
January 2017, PloS one,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
April 2003, Chemistry and physics of lipids,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
April 2005, Journal of the American Chemical Society,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
November 2008, Proceedings of the National Academy of Sciences of the United States of America,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
August 1995, Biophysical journal,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
September 2016, ACS nano,
Andrea Slade, and Jeanne Luh, and Sylvia Ho, and Christopher M Yip
August 2011, Chemical communications (Cambridge, England),
Copied contents to your clipboard!