Tricarboxylic acid-cycle enzymes and ATP pool in facultative and obligate methylotrophs: Pseudomonas J26 and Methylomonas Pl1. 1979

J Michalik, and L Budohoski, and K Raczyńska-Bojanowska

1. No essential differences were found in the activities of tricarboxylic acid-cycle enzymes in the newly isolated facultative methylotroph Pseudomonas J26 and obligate methylotroph Methylomonas Pl1. 2-Oxoglutarate dehydrogenase and succinate dehydrogenase were absent in Methylomonas Pl1; in Pseudomonas J26 the functioning of the cycle was imparied only on the methanol medium. Citrate synthase of both organisms showed low sensitivity to 2-oxoglutarate, NADH and ATP. 2. In both methylotrophs, methanol dehydrogenase was inhibited non-competitively by ATP: the activity was reduced by half by ATP at a concentration of 5 mM. 3. Concentration of ATP in the log-phase cultures of Methylomonas Pl1 was about twice as high as in Pseudomonas J26 (4.7 and 1.7 mumol/g dry wt., respectively). 4. Differences between the energy state of Methylomonas Pl1 and Pseudomonas J26 might be due to the higher ability of the former to oxidize methanol and/or lower energy requirement for C1 assimilation by the hexulose pathway in the obligate methylotroph.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D007522 Isocitrate Lyase A key enzyme in the glyoxylate cycle. It catalyzes the conversion of isocitrate to succinate and glyoxylate. EC 4.1.3.1. Isocitrase,Isocitratase,Lyase, Isocitrate
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008772 Methylococcaceae A family of gram-negative, aerobic bacteria utilizing only one-carbon organic compounds and isolated from in soil and water. Methane-Oxidizing Bacteria,Methanomonadaceae,Methylomonadaceae,Methane Oxidizing Bacteria,Methylmonadaceae
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005969 Glutamate Dehydrogenase An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2. Dehydrogenase, Glutamate

Related Publications

J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
June 1975, The Biochemical journal,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
January 1973, The Biochemical journal,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
January 1976, Acta biochimica Polonica,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
June 1964, Canadian journal of microbiology,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
January 1974, Mikrobiologiia,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
August 1972, The Biochemical journal,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
June 1956, Canadian journal of microbiology,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
June 1951, The Journal of biological chemistry,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
November 1953, Journal of bacteriology,
J Michalik, and L Budohoski, and K Raczyńska-Bojanowska
October 1966, Canadian journal of microbiology,
Copied contents to your clipboard!