Extracellular matrix proteins influence phenotype and cytokine expression in human breast cancer cell lines. 2002

Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
Department of Obstetrics and Gynecology, Division of Special Gynecology, University of Vienna Medical Center and Ludwig Boltzmann Institute of Clinical Experimental Oncology, Vienna, Austria. Kora.Hirtenlehner@akh-wien.ac.at

Tumor growth and invasion are not only the result of malignant transformation but are also dependent on environmental influences from surrounding stroma, extracellular matrix (ECM), local cytokines and systemic hormones. We have investigated the influence of ECM components on three human breast cancer cell lines of different malignant potential: MCF-7, T47D and MDA-MB-231 were cultured on collagen I, collagen IV, laminin, fibronectin or poly-D-lysine, and we analyzed the proliferation rate and cytokine expression pattern. Among the three cell lines investigated we observed a distinct response to each ECM component. We hypothesize that ECM may have a significant modulatory effect on malignant behavior in vivo which might depend on individual responses and on the differentiation state of tumor cells. This study also shows that the surface on which cells are cultured greatly influences cell kinetics and the cytokine expression pattern.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D016326 Extracellular Matrix Proteins Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix

Related Publications

Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
June 1981, International journal of cancer,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
July 1997, Journal of cellular biochemistry,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
November 2014, Oncology reports,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
November 2001, Molecular carcinogenesis,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
September 1994, British journal of cancer,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
March 2009, Molecular cancer research : MCR,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
November 1995, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
May 1997, The Journal of veterinary medical science,
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
November 2008, Reproductive sciences (Thousand Oaks, Calif.),
Kora Hirtenlehne, and Martina Pec, and Ernst Kubista, and Christian F Singer
October 2012, BMC cancer,
Copied contents to your clipboard!