Concanavalin A enhances phagocytosis and killing of Candida albicans by mice peritoneal neutrophils and macrophages. 2002

Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
Departamento de Ciências Patológicas, CCB, Universidade Estadual de Londrina, Cx P. 6001, 86051-970, Londrina, Brazil.

In this study we tested the hypothesis that after administration of a single intraperitoneal dose of concanavalin A (Con-A) to mice, the proportion of neutrophils and macrophages in the peritoneal exudate and their phagocytic and candidacidal activities should change with time. The number of neutrophils in the peritoneal exudate was greatly increased 6 h after administration of Con-A, and those cells were able to kill both intracellular and extracellular yeast and germ tube forms of Candida albicans. Addition of catalase to the culture medium reduced the killing of C. albicans, suggesting that the candidacidal activity depended on the myeloperoxidase system. The survival of mice pretreated with Con-A and submitted to an inoculum of C. albicans 6 h afterwards was twice higher than that of controls, which suggests that neutrophils were able to clear the experimental infection. One day after the treatment, the population of neutrophils in the exudate was about 45%, but after 2 days it was reduced to only 5% and the candidacidal activity was also reduced. After 4 days the exudate contained over 95% of macrophages, the candidacidal activity reached a maximum, and the phagocytosis mediated by both complement receptors and mannose receptors was increased. Uptake of FITC-mannose-BSA by macrophages was maximal on about the 4th day and was inhibited by mannan, suggesting that treatment with Con-A increased the activity of mannose receptors. These results support the hypothesis that activation of cellular immunity by Con-A occurred in two phases, one dominated by neutrophils, and the other by macrophages expressing increased activity of mannose receptors.

UI MeSH Term Description Entries
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008297 Male Males
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D002177 Candidiasis Infection with a fungus of the genus CANDIDA. It is usually a superficial infection of the moist areas of the body and is generally caused by CANDIDA ALBICANS. (Dorland, 27th ed) Candida Infection,Moniliasis,Candida Infections,Candidiases,Infection, Candida,Moniliases
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D000090323 Mannose Receptor A member of a family of endocytic receptors. Highly expressed on human macrophages, involved in regulating endocytosis, phagocytosis, and immune responses. CD206 Antigen,Cluster of Differentiation 206,MRC1 Protein,Mannose Receptors,Mannose-Fucose Receptor,Mannosyl-Fucosyl Receptor,Receptor, Mannose,206 Cluster, Differentiation,Antigen, CD206,Differentiation 206 Cluster,Mannose Fucose Receptor,Protein, MRC1,Receptor, Mannose-Fucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
June 1999, Medical mycology,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
January 2012, Methods in molecular biology (Clifton, N.J.),
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
October 2000, FEMS microbiology letters,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
June 1980, Infection and immunity,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
March 2002, Journal of microbiological methods,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
May 1996, The Journal of infectious diseases,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
July 1977, Sabouraudia,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
January 1988, Immunopharmacology,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
January 1992, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
Wagner Loyola, and Daniel Augusto Gaziri, and Luis Carlos Jabur Gaziri, and Ionice Felipe
November 2008, Medical mycology,
Copied contents to your clipboard!