Phylogenetic implications of the superfast myosin in extraocular muscles. 2002

Fred Schachat, and Margaret M Briggs
Department of Cell Biology, Division of Physiology, Duke University Medical School, Durham, NC 27710, USA. f.schachat@cellbio.duke.edu

Extraocular muscle exhibits higher-velocity and lower-tension contractions than other vertebrate striated muscles. These distinctive physiological properties are associated with the expression of a novel extraocular myosin heavy chain (MYH). Encoded by the MYH13 gene, the extraocular myosin heavy chain is a member of the fast/developmental MYH gene cluster on human chromosome 17 and the syntenic MYH cluster on mouse chromosome 11. Comparison of cDNA sequences reveals that MYH13 also encodes the atypical MYH identified in laryngeal muscles, which have similar fast contractile properties. Comparing the MYH13 sequence with the other members of the fast/developmental cluster, the slow/cardiac MYH genes and two orphan skeletal MYH genes in the human genome provides insights into the origins of specialization in striated muscle myosins. Specifically, these studies indicate (i) that the extraocular myosin is not derived from the adult fast skeletal muscle myosins, but was the first member of the fast/developmental MYH gene cluster to diverge and specialize, (ii) that the motor and rod domains of the MYH13 have evolved under different selective pressures and (iii) that the MYH13 gene has been largely insulated from genomic events that have shaped other members of the fast/developmental cluster. In addition, phylogenetic footprinting suggests that regulation of the extraocular MYH gene is not governed primarily by myogenic factors, but by a hierarchical network of regulatory factors that relate its expression to the development of extraocular muscles.

UI MeSH Term Description Entries
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002886 Chromosomes, Human, Pair 17 A specific pair of GROUP E CHROMOSOMES of the human chromosome classification. Chromosome 17
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D018995 Myosin Heavy Chains The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity. Myosin Heavy Chain,Heavy Chain, Myosin,Heavy Chains, Myosin

Related Publications

Fred Schachat, and Margaret M Briggs
November 1998, Neuroreport,
Fred Schachat, and Margaret M Briggs
February 2024, The Journal of physiology,
Fred Schachat, and Margaret M Briggs
April 2003, Investigative ophthalmology & visual science,
Fred Schachat, and Margaret M Briggs
July 2010, Experimental cell research,
Fred Schachat, and Margaret M Briggs
August 2002, The Journal of experimental biology,
Fred Schachat, and Margaret M Briggs
September 2013, The Journal of biological chemistry,
Fred Schachat, and Margaret M Briggs
August 2009, The Journal of experimental biology,
Fred Schachat, and Margaret M Briggs
March 2006, Molecular vision,
Fred Schachat, and Margaret M Briggs
April 1987, Journal of muscle research and cell motility,
Fred Schachat, and Margaret M Briggs
October 2006, Investigative ophthalmology & visual science,
Copied contents to your clipboard!