Negative inotropic influence of hyperosmotic solutions on cardiac muscle. 1975

K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson

In cardiac muscle, moderate degrees of hyperosmolality of the type encountered physiologically or clinically (i.e., less than 200 mosM above control) characteristically exert a positive inotropic effect, which presumably is mediated by increased Ca2+ availability for binding to troponin. In contrast, skeletal muscle displays significant contractile depression on exposure to hyperosmotic solutions, even at mild degrees of hypertonicity. To determine whether a similar potential for hyperosmolarity-induced depression also exists in cardiac muscle, right ventricular papillary muscles from cats were exposed to hypertonic solutions of mannitol or sucrose under circumstances in which positive inotropic effects were precluded by prior exposure to a bathing solution of 4.0 mM Ca2+ and paired electrical stimulation to maximize intracellular Ca2+ before addition of the hyperosmotic substances. In contrast to their usual positive inotropic effects, hypertonic solutions under these conditions caused cardiac depression at all osmolarities tested. Developed tension and its maximal rate of development (dT/dt) decreased by 18% at 50 mosM above control, by 30% at 100 mosM, by 36% at 150 mosM, and by 42% at 200 mosM (P less than 0.01 for all). Time to peak tension and resting tension were not changed significantly. When the muscles were returned to control solutions, tension development also returned toward normal. The data are compatible with the hypothesis that, within the range tested, all degrees of hyperosmolarity exert a significant negative inotropic influence on cardiac muscle, as is true in skeletal muscle; manifestation of this effect of increased tonicity normally would be obscured at low degrees of hyperosmolality, however, by an overriding positive influence that is absent in skeletal muscle.

UI MeSH Term Description Entries
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose

Related Publications

K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
December 1990, Archives internationales de physiologie et de biochimie,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
July 1969, The American journal of physiology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
March 1981, The American journal of pathology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
September 2005, Scandinavian cardiovascular journal : SCJ,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
July 1984, Japanese journal of pharmacology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
September 1979, The Journal of physiology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
February 1987, The American journal of physiology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
January 1980, The American journal of physiology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
July 1997, The American journal of physiology,
K Wildenthal, and R C Adcock, and J S Crie, and G H Templeton, and J T Willerson
September 1983, Experientia,
Copied contents to your clipboard!