Corpus luteum (CL) function: local control mechanisms. 2002

R Webb, and K J Woad, and D G Armstrong
School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK. bob.webb@nottingham.ac.uk

LH and PGF(2alpha) are the principal luteotrophic and luteolytic hormones in domestic animals, however, it is becoming increasingly apparent that intra-ovarian factors can modulate luteal function. For example, the insulin-like growth factors (IGF-I and -II) can regulate ovarian function, and have direct effects on ovarian cells. An important role for the IGFs in regulating ovarian function is suggested by the multiple effects of IGFs on both follicular and luteal steroidogenesis. Expression of mRNA encoding IGF-I, IGF-II and the type 1 IGF receptor has also been detected in the ruminant CL and is suggestive of autocrine/paracrine roles for both IGF-I and -II in the regulation of luteal function. The actions of the IGFs are further modulated by their association with specific binding proteins (IGFBPs), which regulate the transport of IGFs and their presentation to specific receptors. IGFBPs have been detected in the CL of domestic animals, and inhibitory effects on IGF-I-stimulated progesterone production have been demonstrated. The rapid cyclical changes in luteal growth and regression are associated with rapid changes in vasculature. The principle angiogenic factors include the fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF) and the angiopoietins (Ang). Other locally produced factors include cytokines such as TNF-alpha and IL-1beta. One such factor is monocyte chemoattractant protein (MCP-1), which increases after exogenous PGF(2alpha). An influx of macrophages takes place in the CL around luteolysis, possibly in response to MCP-1 release, but these changes are not observed in cattle when luteolysis is inhibited. In conclusion locally produced factors are important in the control of luteal function, although their roles have yet to fully elucidated.

UI MeSH Term Description Entries
D007109 Immunity Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances. Immune Process,Immune Response,Immune Processes,Immune Responses,Process, Immune,Response, Immune
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D018919 Neovascularization, Physiologic The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process. Angiogenesis, Physiologic,Angiogenesis, Physiological,Neovascularization, Physiological,Physiologic Angiogenesis,Physiologic Neovascularization,Physiological Angiogenesis,Physiological Neovascularization
D018925 Chemokines Class of pro-inflammatory cytokines that have the ability to attract and activate leukocytes. They can be divided into at least three structural branches: C; (CHEMOKINES, C); CC; (CHEMOKINES, CC); and CXC; (CHEMOKINES, CXC); according to variations in a shared cysteine motif. Chemokine,Chemotactic Cytokine,Chemotactic Cytokines,Cytokines, Chemotactic,Intercrine,Intercrines,Cytokine, Chemotactic

Related Publications

R Webb, and K J Woad, and D G Armstrong
December 2013, Reproductive biology,
R Webb, and K J Woad, and D G Armstrong
January 1991, Oxford reviews of reproductive biology,
R Webb, and K J Woad, and D G Armstrong
January 1967, Archives d'anatomie microscopique et de morphologie experimentale,
R Webb, and K J Woad, and D G Armstrong
January 1989, Journal of reproduction and fertility. Supplement,
R Webb, and K J Woad, and D G Armstrong
July 1990, Fertility and sterility,
R Webb, and K J Woad, and D G Armstrong
June 1947, The Journal of clinical endocrinology and metabolism,
R Webb, and K J Woad, and D G Armstrong
March 1992, Fertility and sterility,
R Webb, and K J Woad, and D G Armstrong
September 1990, Clinical obstetrics and gynecology,
R Webb, and K J Woad, and D G Armstrong
January 1994, Human reproduction (Oxford, England),
R Webb, and K J Woad, and D G Armstrong
January 1993, Free radical biology & medicine,
Copied contents to your clipboard!