Host-specific incompatibility by 9-bp direct repeats indicates a role in the maintenance of broad-host-range plasmid RK2. 2002

James W Wilson, and David H Figurski
Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th St., New York, NY 10032, USA.

Broad-host-range incompatibility group P (IncP) plasmids RK2 and R751 have 9-bp direct repeats (DR) of unknown function located between their kilC and kilE loci. The nucleotide sequences of the 9-bp repeats are different for RK2 (an IncPalpha group plasmid) and R751 (IncPbeta group), but both DR regions are organized similarly, including an 11-bp spacer with identical 5'-CGCCA-3' cores and an adjacent binding site for KorB, a known partition protein and transcriptional repressor. The occurrence of similarly arranged DR elements with different repeat sequences is suggestive of an important plasmid-specific function for the DR regions. Here we show that the cloned RK2 DR region in trans to RK2 exhibits a host-specific incompatibility phenotype, in which RK2 is destabilized in Pseudomonas aeruginosa but not in Escherichia coli. Incompatibility was not dependent on the adjacent KorB-binding site. Deletion of the kilE locus, which is required for stable maintenance in P. aeruginosa, did not abolish DR-mediated incompatibility. Precise deletion of DR from RK2 had no effect on maintenance but eliminated sensitivity to DR in trans, showing that incompatibility requires DR to be present on both plasmids. These results raise the possibility that the DR region may be involved in a plasmid maintenance system for P. aeruginosa that is independent of the known stability functions on RK2.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions
D021901 DNA, Intergenic Any of the DNA in between gene-coding DNA, including untranslated regions, 5' and 3' flanking regions, INTRONS, non-functional pseudogenes, and non-functional repetitive sequences. This DNA may or may not encode regulatory functions. DNA, Junk,DNA, Spacer,Intergenic DNA,Junk DNA,Spacer DNA,Intercistronic Region,Intercistronic Sequence,Intergenic Region,Intergenic Sequence,Sequence, Intergenic,DNAs, Intergenic,DNAs, Junk,DNAs, Spacer,Intercistronic Regions,Intercistronic Sequences,Intergenic DNAs,Intergenic Regions,Intergenic Sequences,Junk DNAs,Region, Intercistronic,Region, Intergenic,Regions, Intercistronic,Regions, Intergenic,Sequence, Intercistronic,Sequences, Intercistronic,Sequences, Intergenic,Spacer DNAs

Related Publications

James W Wilson, and David H Figurski
December 1982, Journal of bacteriology,
James W Wilson, and David H Figurski
November 1998, Journal of bacteriology,
James W Wilson, and David H Figurski
August 1982, Nature,
James W Wilson, and David H Figurski
January 1979, Molecular & general genetics : MGG,
James W Wilson, and David H Figurski
January 1985, Basic life sciences,
James W Wilson, and David H Figurski
January 1981, Plasmid,
James W Wilson, and David H Figurski
November 2010, Plasmid,
James W Wilson, and David H Figurski
December 1975, Science (New York, N.Y.),
Copied contents to your clipboard!