Cellular pattern formation in the retina: retinal regeneration as a model system. 2002

Deborah L Stenkamp, and David A Cameron
Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA. dstenkam@uidaho.edu

Like many structures in the central nervous system, the neural retina is highly organized at the cellular level. Examples of this cellular organization include the laminar profile of the vertebrate retina, the hexagonal array of ommatidia in the retinas of insects, and non-random two-dimensional patterns of specific vertebrate retinal neurons. These organized cellular ensembles are taxonomically robust, and their importance in visual processing is, although typically not well understood, virtually axiomatic. The presence of non-random cellular patterns in the retina also begs questions concerning the spatial nature of the patterns, and the underlying mechanisms that coordinate their assembly during retinal development and growth. What are the spatial characteristics of the non-random cellular patterns? What molecular signaling schemes might account for their assembly? What are good model systems for investigating these issues? In this review we attempt to provide some preliminary answers to these questions. We present recent advances in our understanding of cellular patterns in the vertebrate retina and the mechanisms that underlie their assembly, the ability of adult anamniote retinas to regenerate following injury, and how these seemingly disparate topics can be successfully merged into an effort to better understand both processes. We combine insights from retinal assembly mechanisms in Drosophila with empirical, quantitative, and theoretical investigations in vertebrates, to propose an inclusive model for retinal cell patterning.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017956 Photoreceptor Cells, Invertebrate Specialized cells in the invertebrates that detect and transduce light. They are predominantly rhabdomeric with an array of photosensitive microvilli. Illumination depolarizes invertebrate photoreceptors by stimulating Na+ influx across the plasma membrane. Invertebrate Photoreceptors,Photoreceptors, Invertebrate,Invertebrate Photoreceptor Cells,Cell, Invertebrate Photoreceptor,Cells, Invertebrate Photoreceptor,Invertebrate Photoreceptor,Invertebrate Photoreceptor Cell,Photoreceptor Cell, Invertebrate,Photoreceptor, Invertebrate
D020419 Photoreceptor Cells, Vertebrate Specialized PHOTOTRANSDUCTION neurons in the vertebrates, such as the RETINAL ROD CELLS and the RETINAL CONE CELLS. Non-visual photoreceptor neurons have been reported in the deep brain, the PINEAL GLAND and organs of the circadian system. Retinal Photoreceptor Cells,Rods and Cones,Photoreceptors, Retinal,Photoreceptors, Vertebrate,Retinal Photoreceptors,Vertebrate Photoreceptor Cells,Vertebrate Photoreceptors,Cell, Retinal Photoreceptor,Cell, Vertebrate Photoreceptor,Cells, Retinal Photoreceptor,Cells, Vertebrate Photoreceptor,Cones and Rods,Photoreceptor Cell, Retinal,Photoreceptor Cell, Vertebrate,Photoreceptor Cells, Retinal,Photoreceptor, Retinal,Photoreceptor, Vertebrate,Retinal Photoreceptor,Retinal Photoreceptor Cell,Vertebrate Photoreceptor,Vertebrate Photoreceptor Cell

Related Publications

Deborah L Stenkamp, and David A Cameron
January 1980, Neurochemistry international,
Deborah L Stenkamp, and David A Cameron
November 2001, Journal of theoretical biology,
Deborah L Stenkamp, and David A Cameron
December 2001, Seminars in cell & developmental biology,
Deborah L Stenkamp, and David A Cameron
May 2009, Molecular vision,
Deborah L Stenkamp, and David A Cameron
March 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Deborah L Stenkamp, and David A Cameron
January 2004, Zebrafish,
Deborah L Stenkamp, and David A Cameron
April 2002, Journal of theoretical biology,
Copied contents to your clipboard!