Remission and pancreas isograft survival in recent onset diabetic NOD mice after treatment with low-dose anti-CD3 monoclonal antibodies. 2002

Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
The Austin Research Institute, Heidelberg, Victoria, Australia. p.mottram@ari.unimelb.edu.au

Diabetes in NOD mice is an autoimmune disease similar to Type I diabetes in humans. Prior to hypoglycemia, changes in the islet infiltrate led to autoreactive T cell activation and destruction of the insulin-producing beta cells. If T cell activation can be inhibited before beta cell destruction is complete, islet cell rescue and regeneration can occur. Female NOD mice > 100 days old with blood glucose levels > 20 mM/l for less than 7 days were selected as 'recent onset' mice. Untreated, all of these animals would die of diabetes in < 40 days. Mice treated with anti-CD4 (GK1.5) achieved 14.3% permanent remission, while those treated with anti-CD8 (53.6.7) showed 33.3% permanent remission. Mice treated with anti-CD3 (145-2C1) also achieved 33.3% permanent remission, but 14% of these died of first dose syndrome. In mice treated with a low dose of anti-CD3 (10 microg KT3), which did not induce first dose syndrome, 50% remained in remission for > 100 days. This dose of mAb reduced insulitis but did not deplete splenic CD3 cells. When mice in remission were challenged with a vascularized pancreas isograft at 50 days, 9/22 remained normal and 13/22 had recurrent disease in both transplanted and native pancreas. Of the long-surviving isografts 7/9 were in KT3 treated recipients. Histology showed activated T cell infiltration in the native and transplanted pancreases of mice with transient remission. Benign insulitis with macrophages, B cells, CD4 > CD8 T cells and low levels of IL-2R, IL-2, IFN-gamma and IL-4 was seen in islets from the native pancreas and in long surviving pancreas isografts in mice that remained in remission. Thus, using low dose KT3, it was possible to halt the development of diabetes in 50% of animals treated soon after diagnosis, despite significant islet cell destruction at this stage. Of the KT3 treated mice in permanent remission, 70% had re-established tolerance to autoantigen and did not destroy vascularized pancreas isografts.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D014185 Transplantation, Isogeneic Transplantation between genetically identical individuals, i.e., members of the same species with identical histocompatibility antigens, such as monozygotic twins, members of the same inbred strain, or members of a hybrid population produced by crossing certain inbred strains. Transplantation, Syngeneic,Isogeneic Transplantation,Isograft Transplantation,Isografting,Syngeneic Transplantation,Transplantation, Isograft
D016035 Pancreas Transplantation The transference of a pancreas from one human or animal to another. Grafting, Pancreas,Transplantation, Pancreas,Graftings, Pancreas,Pancreas Grafting,Pancreas Graftings,Pancreas Transplantations,Transplantations, Pancreas
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse

Related Publications

Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
April 1990, Transplantation proceedings,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
January 1992, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
October 1992, Transplantation proceedings,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
January 2023, Frontiers in immunology,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
January 2015, Liver international : official journal of the International Association for the Study of the Liver,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
February 1993, Transplantation proceedings,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
January 2014, PloS one,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
October 2019, ImmunoHorizons,
Patricia L Mottram, and Lisa J Murray-Segal, and Wenruo Han, and Julie Maguire, and Alicia N Stein-Oakley
February 1993, Diabetes,
Copied contents to your clipboard!