13C NMR analysis of methionine sulfoxide in protein. 1979

J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter

The 13C epsilon NMR signal of methionine sulfoxide is 22.6 ppm downfield from that of methionine. This affords a method by which the extent of methionine oxidation can be determined in intact protein. We demonstrate the utility of this approach with beta-galactosidase enriched with 13C in its methionine methyls.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002700 Chloramines Inorganic derivatives of ammonia by substitution of one or more hydrogen atoms with chlorine atoms or organic compounds with the general formulas R2NCl and RNCl2 (where R is an organic group). Chloroamines
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D013454 Sulfoxides Organic compounds that have the general formula R-SO-R. They are obtained by oxidation of mercaptans (analogous to the ketones). (From Hackh's Chemical Dictionary, 4th ed)
D014105 Tosyl Compounds Toluenesulfonyl compounds with general formula CH3C6H4S(O2)R” widely used to block amino groups in the course of syntheses of drugs and other biologically active compounds. Toluenesulfonyl Compounds,Compounds, Toluenesulfonyl,Compounds, Tosyl

Related Publications

J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
December 2008, Biomolecular NMR assignments,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
July 2007, Biomolecular NMR assignments,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
July 1999, FEBS letters,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
July 1982, European journal of biochemistry,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
January 1995, Methods in enzymology,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
August 1983, FEBS letters,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
January 1994, The Italian journal of biochemistry,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
March 2004, Molecular biology of the cell,
J S Cohen, and J Yariv, and A J Kalb, and L Jacobson, and Y Shechter
January 2018, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!