alpha(1)-Proteinase inhibitor mutants with specificity for plasma kallikrein and C1s but not C1. 2002

Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
Department of Oral Medicine and Diagnostic Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA.

Coagulation and complement proteinases are activated in sepsis, and one approach to therapy is to develop proteinase inhibitors that will specifically inhibit these proteinases without inhibiting activated protein C, a proteinase that is beneficial to survival. In this study, we made mutants of the serpin alpha(1)-PI, designed to mimic the specificity of C1-inhibitor. The P3-P2-P1 residues of alpha1-PI were changed from IPM to LGR and PFR, sequences preferred by C1s and kallikrein, respectively. Inhibition of C1s, kallikrein, factor XIIa, and activated protein C was assessed by SDS-PAGE, and by determination of the k(app) and SI. alpha(1)-PI-LGR inhibited C1s with a rate of 7790 M(-1)s(-1), but only minimal inhibition of C1 in a hemolytic assay was observed. Kallikrein, factor XIIa, and activated protein C were inhibited with rates of 382,180 M(-1)s(-1), 10,400 M(-1)s(-1), and 3500 M(-1)s(-1), respectively. alpha(1)-PI-PFR was a poor inhibitor of C1s, factor XIIa, and activated protein C, but had enhanced reactivity with kallikrein. Changing the P4' residue of alpha(1)-PI-LGR Pro to Glu reduced the activity with C1s, consistent with the idea that C1s requires hydrophobic residues in this region of the serpin for optimal interaction. The data provide insight into the requirements for kallikrein and C1s inhibition necessary for designing inhibitors with appropriate properties for further investigation as therapeutic agents.

UI MeSH Term Description Entries
D007610 Kallikreins Proteolytic enzymes from the serine endopeptidase family found in normal blood and urine. Specifically, Kallikreins are potent vasodilators and hypotensives and increase vascular permeability and affect smooth muscle. They act as infertility agents in men. Three forms are recognized, PLASMA KALLIKREIN (EC 3.4.21.34), TISSUE KALLIKREIN (EC 3.4.21.35), and PROSTATE-SPECIFIC ANTIGEN (EC 3.4.21.77). Kallikrein,Kininogenase,Callicrein,Dilminal,Kallidinogenase,Kalliginogenase,Kallikrein A,Kallikrein B',Kallikrein Light Chain,Kinin-Forming Enzyme,Padutin,alpha-Kallikrein,beta-Kallikrein,beta-Kallikrein B,Enzyme, Kinin-Forming,Kinin Forming Enzyme,Light Chain, Kallikrein,alpha Kallikrein,beta Kallikrein,beta Kallikrein B
D011486 Protein C A vitamin-K dependent zymogen present in the blood, which, upon activation by thrombin and thrombomodulin exerts anticoagulant properties by inactivating factors Va and VIIIa at the rate-limiting steps of thrombin formation.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003172 Complement C1 The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION. C1 Complement,Complement 1,Complement Component 1,C1, Complement,Complement, C1,Component 1, Complement
D003173 Complement C1s A 77-kDa subcomponent of complement C1, encoded by gene C1S, is a SERINE PROTEASE existing as a proenzyme (homodimer) in the intact complement C1 complex. Upon the binding of COMPLEMENT C1Q to antibodies, the activated COMPLEMENT C1R cleaves C1s into two chains, A (heavy) and B (light, the serine protease), linked by disulfide bonds yielding the active C1s. The activated C1s, in turn, cleaves COMPLEMENT C2 and COMPLEMENT C4 to form C4b2a (CLASSICAL C3 CONVERTASE). C 1 Esterase,C1 Esterase,C1s Complement,Complement 1 Esterase,Complement 1s,Complement Component 1s,C1s, Complement,Complement, C1s,Component 1s, Complement,Esterase, C 1,Esterase, C1,Esterase, Complement 1
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
March 1970, Journal of immunology (Baltimore, Md. : 1950),
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
January 1988, Methods in enzymology,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
January 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
July 1978, Advances in the biosciences,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
August 1984, Biochimica et biophysica acta,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
February 1991, Immunological investigations,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
May 1997, The Journal of biological chemistry,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
January 1979, Biochimica et biophysica acta,
Thomas Sulikowski, and Bryan A Bauer, and Philip A Patston
September 1996, Pediatria polska,
Copied contents to your clipboard!