Plane of cell cleavage and numb distribution during cell division relative to cell differentiation in the developing retina. 2002

Amila O Silva, and Cesar E Ercole, and Steven C McLoon
Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Progenitor cells in the early developing nervous system can divide symmetrically, giving rise to two daughter cells that divide again, or asymmetrically, giving rise to one cell that differentiates and one that divides again. It has been suggested that the orientation of the cell cleavage plane during mitosis determines the type of division. A marker of early cell differentiation, the RA4 antigen, was used to identify regions of the developing chick retina with and without differentiating cells, and the orientation of the cleavage plane was characterized for mitotic figures in each region. No difference was found in the frequency of any orientation between the regions with or without differentiating cells. Furthermore, in the region of the retina with differentiating cells, the RA4 antigen was present in mitotic figures with every possible orientation. Thus, the orientation of the cleavage plane appears to be unrelated to whether or not a division produces a cell that differentiates. It has also been suggested that the intracellular protein Numb mediates neurogenesis via asymmetric localization during cell division. Numb localization was compared with expression of markers of early cell differentiation, the RA4 antigen and Delta. Differentiating and nondifferentiating cells were found both with and without Numb expression. Cells with a cleavage plane parallel to the retinal surface were polarized, such that Numb and/or the RA4 antigen, when present, were only in the daughter cell farthest from the ventricle. These findings indicate a need to reconsider current hypotheses regarding the key features underlying symmetric and asymmetric divisions in the developing nervous system.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007605 Juvenile Hormones Compounds, either natural or synthetic, which block development of the growing insect. Insect Growth Regulator,Insect Growth Regulators,Juvenile Hormone,Growth Regulators, Insect,Regulators, Insect Growth,Growth Regulator, Insect,Hormone, Juvenile,Hormones, Juvenile,Regulator, Insect Growth
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D013047 Specific Pathogen-Free Organisms Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free. Pathogen-Free Organisms,Specific Pathogen Free,Organism, Pathogen-Free,Organism, Specific Pathogen-Free,Organisms, Pathogen-Free,Organisms, Specific Pathogen-Free,Pathogen Free Organisms,Pathogen Free, Specific,Pathogen Frees, Specific,Pathogen-Free Organism,Pathogen-Free Organism, Specific,Pathogen-Free Organisms, Specific,Specific Pathogen Free Organisms,Specific Pathogen-Free Organism

Related Publications

Amila O Silva, and Cesar E Ercole, and Steven C McLoon
May 2006, The Journal of comparative neurology,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
February 2004, The European journal of neuroscience,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
October 1995, Nature,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
April 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
April 1993, Developmental dynamics : an official publication of the American Association of Anatomists,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
December 1993, Brain research. Developmental brain research,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
January 1983, Brain research bulletin,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
March 1985, Brain research,
Amila O Silva, and Cesar E Ercole, and Steven C McLoon
March 2004, The Journal of biological chemistry,
Copied contents to your clipboard!