AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. 2002

Tamara A Ranalli, and Samson Tom, and Robert A Bambara
Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642.

Base loss is common in cellular DNA, resulting from spontaneous degradation and enzymatic removal of damaged bases. Apurinic/apyrimidinic (AP) endonucleases recognize and cleave abasic (AP) sites during base excision repair (BER). APE1 (REF1, HAP1) is the predominant AP endonuclease in mammalian cells. Here we analyzed the influences of APE1 on the human BER pathway. Specifically, APE1 enhanced the enzymatic activity of both flap endonuclease1 (FEN1) and DNA ligase I. FEN1 was stimulated on all tested substrates, regardless of flap length. Interestingly, we have found that APE1 can also inhibit the activities of both enzymes on substrates with a tetrahydrofuran (THF) residue on the 5'-downstream primer of a nick, simulating a reduced abasic site. However once the THF residue was displaced at least a single nucleotide, stimulation of FEN1 activity by APE1 resumes. Stimulation of DNA ligase I required the traditional nicked substrate. Furthermore, APE1 was able to enhance overall product formation in reconstitution of BER steps involving FEN1 cleavage followed by ligation. Overall, APE1 both stimulated downstream components of BER and prevented a futile cleavage and ligation cycle, indicating a far-reaching role in BER.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072481 DNA Ligase ATP ATP-dependent cellular enzyme which catalyzes DNA replication, repair and recombination through formation of internucleotide ester bonds between phosphate and deoxyribose moieties. Vertebrate cells encode three well-characterized DNA ligases, DNA ligase I, III and IV, all of which are related in structure and sequence. DNA ligases either require ATP or NAD. However, archaebacterial, viral, and some eubacterial DNA ligases are ATP-dependent. ATP-Dependent DNA Ligase,DNA Ligase I,DNA Ligase II,DNA Ligase III,DNA Ligase IIIalpha,DNA Ligase IV,DNA Ligases, ATP-Dependent,LIGIIIalpha Protein,Polydeoxyribonucleotide Synthase ATP,ATP Dependent DNA Ligase,ATP, DNA Ligase,ATP, Polydeoxyribonucleotide Synthase,ATP-Dependent DNA Ligases,DNA Ligase, ATP-Dependent,DNA Ligases, ATP Dependent,IIIalpha, DNA Ligase,Ligase ATP, DNA,Ligase I, DNA,Ligase II, DNA,Ligase III, DNA,Ligase IIIalpha, DNA,Ligase IV, DNA,Ligase, ATP-Dependent DNA,Ligases, ATP-Dependent DNA,Synthase ATP, Polydeoxyribonucleotide
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D043603 DNA-(Apurinic or Apyrimidinic Site) Lyase A DNA repair enzyme that catalyses the excision of ribose residues at apurinic and apyrimidinic DNA sites that can result from the action of DNA GLYCOSYLASES. The enzyme catalyzes a beta-elimination reaction in which the C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. This enzyme was previously listed under EC 3.1.25.2. Apurinic DNA Endonuclease,DNA Lyase (Apurinic or Apyrimidinic),Endodeoxyribonuclease (Apurinic or Apyrimidinic),AP Endonuclease,AP Lyase,Apurine-Apyrimidine Endonuclease,Apurinic Endonuclease,Apurine Apyrimidine Endonuclease,DNA Endonuclease, Apurinic,Endonuclease, AP,Endonuclease, Apurine-Apyrimidine,Endonuclease, Apurinic,Endonuclease, Apurinic DNA
D045585 Flap Endonucleases Endonucleases that remove 5' DNA sequences from a DNA structure called a DNA flap. The DNA flap structure occurs in double-stranded DNA containing a single-stranded break where the 5' portion of the downstream strand is too long and overlaps the 3' end of the upstream strand. Flap endonucleases cleave the downstream strand of the overlap flap structure precisely after the first base-paired nucleotide, creating a ligatable nick. Flap Endonuclease,FEN-1,Fen1 Protein,Flap Endonuclease-1,RAD2 Homolog-1 Nuclease,RTH-1 Nuclease,Endonuclease, Flap,Endonuclease-1, Flap,Endonucleases, Flap,Flap Endonuclease 1,Nuclease, RTH-1,RAD2 Homolog 1 Nuclease,RTH 1 Nuclease
D019757 Carbon-Oxygen Lyases Enzymes that catalyze the cleavage of a carbon-oxygen bond by means other than hydrolysis or oxidation. EC 4.2. Carbon Oxygen Lyases,Lyases, Carbon-Oxygen

Related Publications

Tamara A Ranalli, and Samson Tom, and Robert A Bambara
February 2005, The Journal of biological chemistry,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
June 2001, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
April 1998, The Journal of biological chemistry,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
July 2004, Molecular cell,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
November 1999, The Journal of biological chemistry,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
November 2002, Molecular cell,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
April 2011, Nucleic acids research,
Tamara A Ranalli, and Samson Tom, and Robert A Bambara
January 2000, Current biology : CB,
Copied contents to your clipboard!