Discrete store-operated calcium influx into an intracellular compartment in rabbit arteriolar smooth muscle. 2002

R Flemming, and A Cheong, and A M Dedman, and D J Beech
School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.

This study tested the hypothesis that store-operated channels (SOCs) exist as a discrete population of Ca2+ channels activated by depletion of intracellular Ca(2+) stores in cerebral arteriolar smooth muscle cells and explored their direct contractile function. Using the Ca2+ indicator fura-PE3 it was observed that depletion of sarcoplasmic reticulum (SR) Ca2+ by inhibition of SR Ca2+-ATPase (SERCA) led to sustained elevation of [Ca2+]i that depended on extracellular Ca2+ and slightly enhanced Mn2+ entry. Enhanced background Ca2+ influx did not explain the raised [Ca2+]i in response to SERCA inhibitors because it had marked gadolinium (Gd3+) sensitivity, which background pathways did not. Effects were not secondary to changes in membrane potential. Thus SR Ca2+ depletion activated SOCs. Strikingly, SOC-mediated Ca2+ influx did not evoke constriction of the arterioles, which were in a resting state. This was despite the fura-PE3-indicated [Ca2+]i rise being greater than that evoked by 20 mM [K+]o (which did cause constriction). Release of endothelial vasodilators did not explain the absence of SOC-mediated constriction, nor did a change in Ca2+ sensitivity of the contractile proteins. We suggest SOCs are a discrete subset of Ca2+ channels allowing Ca2+ influx into a 'non-contractile' compartment in cerebral arteriolar smooth muscle cells.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Flemming, and A Cheong, and A M Dedman, and D J Beech
June 2008, American journal of respiratory cell and molecular biology,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
May 2004, American journal of physiology. Lung cellular and molecular physiology,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
August 2000, FEBS letters,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
August 2000, The Journal of biological chemistry,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
March 2008, British journal of pharmacology,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
October 2012, Microcirculation (New York, N.Y. : 1994),
R Flemming, and A Cheong, and A M Dedman, and D J Beech
July 2003, British journal of pharmacology,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
May 2011, Cell calcium,
R Flemming, and A Cheong, and A M Dedman, and D J Beech
February 2006, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!