Targeting of CD45 protein tyrosine phosphatase activity to lipid microdomains on the T cell surface inhibits TCR signaling. 2002

Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA. X_He@fccc.edu

CD45, a transmembrane protein tyrosine phosphatase (PTP), can either positively or negatively regulate Src-family protein tyrosine kinase (PTK) activity in vivo. It is proposed that TCR-initiated signaling requires the segregation of PTP activities from the engaged TCR, based upon the differential membrane compartmentalization on the T cell surface. To test the importance of CD45 exclusion from lipid microdomains for proper TCR signaling, a chimeric molecule was generated by fusing the CD45 cytoplasmic region, which contains the PTP domains, to the amino-terminal 12 amino acids of Lck, which target Lck to lipid microdomains. Using 3A9 T lymphocyte hybridoma (3A9H) cells whose TCR recognizes hen egg-white lysozyme (HEL), Lck-CD45 expression resulted in its targeting to lipid microdomains. The 3A9H cells expressing Lck-CD45 were reduced in their responses to HEL or co-cross-linking of CD3 and CD4, as assessed by IL-2 production and Ca(2+) mobilization. Src-family PTK activity associated with lipid microdomains was also decreased. These results suggest that the segregation of CD45 from proximal TCR signaling components is necessary for TCR signaling and that the targeting of CD45 PTP activity to lipid microdomains on the T cell surface results in decreased sensitivity of TCR-mediated signaling.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken

Related Publications

Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
May 2004, Blood,
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
November 2008, Journal of immunology (Baltimore, Md. : 1950),
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
April 2013, Acta pharmacologica Sinica,
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
July 1989, Journal of immunology (Baltimore, Md. : 1950),
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
December 1994, Molecular and cellular biology,
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
January 2000, Methods in molecular biology (Clifton, N.J.),
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
February 1997, Journal of immunology (Baltimore, Md. : 1950),
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
August 1990, European journal of immunology,
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
July 1989, Immunology today,
Xiao He, and Terry A Woodford-Thomas, and Kenneth G Johnson, and Dulari D Shah, and Matthew L Thomas
June 2003, Journal of immunological methods,
Copied contents to your clipboard!